Section 2.8 Additional Exercises
¶Exercise 2.8.1.
If \(f\left( x\right) =\dfrac{1}{x-1}\text{,}\) then which of the following is equal to \(f\left( \dfrac{1}{x}\right) ?\)
\(f(x)\)
\(-f(x)\)
\(xf(x)\)
\(-xf(x)\)
\(\dfrac{f(x)}{x}\)
\(-\dfrac{f(x)}{x}\)
(d)
Exercise 2.8.2.
If \(f(x)=\dfrac{x}{x+3}\text{,}\) then find and simplify \(\dfrac{f(x)-f(2)}{x-2}\text{.}\)
\(3/\left[5(x+3)\right]\)
Exercise 2.8.3.
If \(f(x)=x^2\text{,}\) then find and simplify \(\dfrac{f(3+h)-f(3)}{h}\text{.}\)
\(6+h\)
Exercise 2.8.4.
What is the domain of
\(f(x)=\dfrac{\sqrt{x-2}}{x^2-9}\text{?}\)
\(g(x)=\dfrac{\sqrt[3]{x-2}}{x^2-9}\text{?}\)
\([2,3)\cup(3,\infty)\)
\((-\infty,-3)\cup(-3,3)\cup(3,\infty)\)
Exercise 2.8.5.
Suppose that \(f(x)=x^3\) and \(g(x)=x\text{.}\) What is the domain of \(\dfrac{f}{g}\text{?}\)
\(\left\{x:x\neq 0\right\}\)
Exercise 2.8.6.
Suppose that \(f(x)=3x-4\text{.}\) Find a function \(g\) such that \((g\circ f)(x)=5x+2\text{.}\)
\(g(x)=(5x+26)/3\)
Exercise 2.8.7.
Which of the following functions is one-to-one?
\(f(x)=x^2+4x+3\)
\(g(x)=\vert x\vert+2\)
\(h(x)=\sqrt[3]{x+1}\)
\(F(x)=\cos x\text{,}\) \(-\pi\leq x\leq\pi\)
\(G(x)=e^x+e^{-x}\)
(c)
Exercise 2.8.8.
What is the inverse of \(f(x)=\ln\left(\dfrac{e^x}{e^x-1}\right)\text{?}\) What is the domain of \(f^{-1}\text{?}\)
\(f^{-1}(x)=f(x)=\ln\left(\dfrac{e^x}{e^x-1}\right)\) and its domain is \((0,\infty)\text{.}\)
Exercise 2.8.9.
Solve the following equations.
\(e^{2-x}=3\)
\(e^{x^2}=e^{4x-3}\)
\(\ln\left(1+\sqrt{x}\right)=2\)
\(\ln(x^2-3)=\ln 2+\ln x\)
\(2-\ln 3\)
1,3
\((e^2-1)^2\)
3
Exercise 2.8.10.
Find the exact value of \(\sin^{-1}\left(-\sqrt{2}/2\right)-\cos^{-1}\left(-\sqrt{2}/2\right)\text{.}\)
\(-\pi\)
Exercise 2.8.11.
Find \(\sin^{-1}\left(\sin(23\pi/5)\right)\text{.}\)
\(2\pi/5\)
Exercise 2.8.12.
It can be proved that \(f(x)=x^3+x+e^{x-1}\) is one-to-one. What is the value of \(f^{-1}(3)\text{?}\)
We notice that \(f(1) = 1^3+1+e^{0} = 1+1+1=3\text{,}\) and so we must have that \(f^{-1}(3) = 1\text{.}\)
Exercise 2.8.13.
Sketch the graph of \(f(x)=\left\{ \begin{array}{cc} -x \amp \text{ if } x\leq 0 \\ \tan ^{-1}x \amp \text{ if } x>0 \end{array} \right.\)