%%%% THIS FILE IS AUTOMATICALLY GENERATED %%%% DO NOT EDIT THIS FILE DIRECTLY, %%%% ONLY EDIT THE SOURCE, tom-65/document.tex. %%%% %% Standard package list \documentclass[letterpaper]{article} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[english]{babel} \usepackage[top=3cm, bottom=3cm, left=3.5cm, right=3.5cm]{geometry} \usepackage[onehalfspacing]{setspace} \usepackage{amsmath,amssymb,amsthm,wasysym} \usepackage{nicefrac,booktabs} \usepackage{mathptmx} \usepackage{graphicx} \usepackage{multirow, rotating} \usepackage{cite} \usepackage[colorlinks=true]{hyperref} %% Various helpers for Tom's papers \newcommand{\gs}{\textnormal{gs}} \newcommand{\ord}{\textnormal{ord}} \newcommand{\Exp}{\textnormal{Exp}} \newcommand{\Log}{\textnormal{Log}} \newcommand{\lcm}{\textnormal{lcm}} \newcommand{\range}{\textnormal{range}} \newcommand{\NR}{\textnormal{NR}} \newcommand{\Mod}[1]{\left(\textnormal{mod}~#1\right)} \newcommand{\ap}[2]{\left\langle #1;#2 \right\rangle} \newcommand{\summ}[1]{\sum_{k=1}^m{#1}} \newcommand{\bt}[1]{{{#1}\mathbb{N}}} \newcommand{\fp}[1]{{\left\lbrace{#1}\right\rbrace}} \newcommand{\intv}[1]{{\left[1,{#1}\right]}} %% Lifted from http://stackoverflow.com/questions/2767389/referencing-a-theorem-like-environment-by-its-name %% This lets me do things like "Theorem A" and have the references work properly. \makeatletter \let\@old@begintheorem=\@begintheorem \def\@begintheorem#1#2[#3]{% \gdef\@thm@name{#3}% \@old@begintheorem{#1}{#2}[#3]% } \def\namedthmlabel#1{\begingroup \edef\@currentlabel{\@thm@name}% \label{#1}\endgroup } \makeatother % end lift \newtheoremstyle{namedthrm} {}{}{}{}{}{}{ } % This last space needs to be there {\bf\thmname{#1} \thmnote{#3}.} %% End reference hack %% Document start \date{} \begin{document} %% Content start \newtheorem{definition}{Definition} \newtheorem{prop}{Proposition} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{claim}{Claim} \newtheorem{corollary}{Corollary} \newtheorem{problem}{Problem} \newtheorem{fact}{Fact} \newtheorem{question}{question} \newtheorem{conj}{Conjecture} \newtheorem{remark}{Remark} % hack from https://stackoverflow.com/questions/718479/what-is-the-best-way-to-produce-a-tilde-in-latex-for-a-website \catcode`~=11 % make LaTeX treat tilde (~) like a normal character \newcommand{\urltilde}{\kern -.12em\lower .8ex\hbox{~}\kern .04em} \catcode`~=13 % revert back to treating tilde (~) as an active character \title{On Double 3-term Arithmetic Progressions} \author{Tom Brown, Veselin Jungi\'{c} and Andrew Poelstra\footnote{ Department of Mathematics, ¶¡ÏãÔ°AV, Burnaby, B.C., Canada. \texttt{tbrown@sfu.ca}, \texttt{vjungic@sfu.ca} and \texttt{asp11@sfu.ca}}} \maketitle \begin{center}{\small {\bf Citation data:} Tom Brown, Veselin Jungi\'c, and Andrew Poelstra, \emph{On double 3-term arithmetic progressions}, INTEGERS - Elect. J. Combin. Number Theory \textbf{14} (2014), \#A43.}\bigskip\end{center} \begin{abstract} In this note we are interested in the problem of whether or not every increasing sequence of positive integers $x_1x_2x_3\cdots$ with bounded gaps must contain a {\it double} 3-term arithmetic progression, i.e., three terms $x_i$, $x_j$, and $x_k$ such that $i+k=2j$ and $x_i+x_k=2x_j$. We consider a few variations of the problem, discuss some related properties of double arithmetic progressions, and present several results obtained by using \texttt{RamseyScript}, a high-level scripting language. \end{abstract} %%% BEGIN DOCUMENT %\begin{document} %\tableofcontents \section{Introduction} %\subsection{} In 1987, Tom Brown and Allen Freedman ended their paper titled {\it Arithmetic progressions in lacunary sets} \cite{brown+freedman1987} with the following conjecture. \begin{conj} Let $(x_i)_{i\geq 1}$ be a sequence of positive integers with $1 \leq x_i \leq K$. Then there are two consecutive intervals of positive integers $I,J$ of the same length, with $\sum _{i\in I}x_i = \sum_{j\in J} x_j$. Equivalently, if $a_1 152$ \\ & 7 & ? \\ \hline \end{tabular} \end{center} \caption{Known Values of $w^\ast(3,3;d)$} \end{table} We note that $w^\ast (3,3;d)$ is already difficult to compute when $d$ is much smaller than $w^\ast(2,3)=17$. (In a 3-coloring containing no monochromatic double 3-term arithmetic progression the maximum gap size of any colour class is 17.) Freedman \cite{freedman} showed that there are 16 double 3-AP free 51-term sequences having the maximum gap of at most $4$. The fact that $w^\ast(3,3;4)=39$ is an interesting contrast, and shows that considering a single sequence instead of partitioning an interval of positive integers into three sequences is somewhat less restrictive. \begin{theorem} $w^\ast (4,2) \geq 30830$. \end{theorem} Starting with the seed 2-coloring $[1,10]=\{1, 4, 6, 7\}\cup\{2, 3, 5, 8, 9, 10\}$, after $2\cdot10^8$ iterations \texttt{RamseyScript} produced a double 4-AP free 2-coloring of the interval $[1,30829]$ that is available at the web page\\ \href{http://people.math.sfu.ca/~vjungic/Double/w-4-2.txt}{people.math.sfu.ca/\urltilde{vjungic/Double/w-4-2.txt}}. \section{$w^\ast(3;a,b,c)$ and $w^\ast(k;a,b)$} Recall that $w^\ast(3; a, b, c)$ is the least number such that every 3-coloring of\linebreak$[1, w^\ast(3; a, b, c)]$, with gap sizes on the three colours restricted to $a$, $b$, and $c$, respectively, has a monochromatic double 3-term arithmetic progression. Similarly, $w^\ast(k; a, b)$ is the least number such that every 2-coloring of $[1, w^\ast(k; a, b)]$, with gap sizes on the two colours restricted to $a$ and $b$, respectively, has a monochromatic double $k$-term arithmetic progression. Table 2 shows values of $w^\ast(3;a,b,c)$ for some small values of $a$, $b$, and $c$. Table 3 shows values of $w^\ast(k;a,b)$ for some small values of $a$, $b$, and $k$. \begin{table}[h] \parbox{.45\linewidth}{ \centering \begin{tabular}{|cc|ccccc|} \hline & & \multicolumn{5}{|c|}{Max Green Gaps} \\ & & 3 & 4 & 5 & 6 & 7+ \\ \hline \multirow{6}{*}{\begin{sideways}Max Blue Gaps\end{sideways}} & 3 & 22 & & & & \\ & 4 & 31 & 31 & & & \\ & 5 & 33 & 38 & 43 & & \\ & 6 & 33 & 41 & 44 & 45 & \\ & 7 & 33 & 41 & 46 & 46 & 46 \\ & 8+ & 33 & 41 & 46 & 46 & 47 \\ \hline \multicolumn{7}{c}{Max Red Gap 3} \end{tabular} } \hfill \parbox{.45\linewidth}{ \begin{center} \begin{tabular}{|cc|cccc|} \hline & & \multicolumn{4}{|c|}{Max Green} \\ & & 5 & 6 & 7 & 8+ \\ \hline \multirow{4}{*}{\begin{sideways}Max Blue\end{sideways}} & 5 & 100 & & & \\ & 6 & $>113$ & $>133$ & & \\ & 7 & ? & ? & ? & \\ & 8+ & ? & ? & ? & ? \\ \hline \multicolumn{6}{c}{Max Red Gap 5} \end{tabular} \end{center} } \parbox{.45\linewidth}{ \begin{center} \begin{tabular}{|cc|cccccc|} \hline & & \multicolumn{6}{|c|}{Max Green Gaps} \\ & & 4 & 5 & 6 & 7 & 8 & 9+ \\ \hline \multirow{8}{*}{\begin{sideways}Max Blue Gaps\end{sideways}} & 4 & 39 & & & & & \\ & 5 & 49 & 63 & & & & \\ & 6 & 56 & 79 & 91 & & & \\ & 7 & 76 & 96 & $>$105 & $>$121 & & \\ & 8 & 81 & 96 & $>$114 & $>$131 & $>$131 & \\ & 9 & 81 & 96 & $>$114 & $>$133 & $>$133 & $>$133 \\ & 10 & 81 & 96 & $>$114 & $>$133 & $>$135 & $>$135 \\ & 11+ & 81 & 97 & $>$114 & $>$133 & $>$135 & $>$135 \\ \hline \multicolumn{8}{c}{Max Red Gap 4} \end{tabular} \end{center} } \caption{Known Values and Bounds for $w^\ast(3;a,b,c)$} \end{table} \begin{table}[h] \parbox{.45\linewidth}{ \begin{center} \begin{tabular}{|cc|cc|} \hline & & \multicolumn{2}{|c|}{Red} \\ & & 2 & 3 \\ \hline \multirow{2}{*}{\begin{sideways}Blue\end{sideways}} & 2 & 7 & \\ & 3 & 11 & 17 \\ \hline \multicolumn{4}{c}{Double 3-AP's} \end{tabular} \end{center} } \hfill \parbox{.45\linewidth}{ \begin{center} \begin{tabular}{|cc|ccc|} \hline & & \multicolumn{3}{|c|}{Red} \\ & & 2 & 3 & 4+ \\ \hline \multirow{3}{*}{\begin{sideways}Blue\end{sideways}} & 2 & 11 & & \\ & 3 & 22 & $>176$ & \\ & 4+ & 22 & $>2690$ & $>3573$ \\ \hline \multicolumn{5}{c}{Double 4-AP's} \end{tabular} \end{center} } \parbox{.45\linewidth}{ \begin{center} \begin{tabular}{|cc|cccc|} \hline & & \multicolumn{4}{|c|}{Red} \\ & & 2 & 3 & 4 & 5+ \\ \hline \multirow{3}{*}{\begin{sideways}Blue\end{sideways}} & 2 & 15 & & & \\ & 3 & 37 & $>131000$ & & \\ & 4 & $>25503$ & ? & ? & \\ & 5+ & $>33366$ & ? & ? & ? \\ \hline \multicolumn{6}{c}{Double 5-AP's} \end{tabular} \end{center} } \caption{Known Values and Bounds for $w^\ast(k;a,b)$} \end{table} Based on this evidence, we propose the following conjecture. \begin{conj} The number $w^*(3, 3)$ exists. The numbers $w^*(4, 3)$ and $w^*(2, 4)$ do not exist. \end{conj} Our guess would be that $w^*(3, 3)<500$. Also we recall that $w^*(2, 3)=17$ and $w^\ast (4,2) \geq 30830$. \section{Double 3-term Arithmetic Progressions in Increasing Sequences of Positive Integers} In this section, we return to Problem 1: the existence of double 3-term arithmetic progressions in infinite sequences of positive integers with bounded gaps. We remind the reader of the meaning of the following terms from combinatorics of words. An infinite word over a finite subset $S$ of $\mathbb{Z}$, called the \textit{alphabet}, is defined as a map $\omega:\mathbb{N}\to S$ and is usually written as $\omega=x_1x_2\cdots,$ with $x_i\in S$, $i\in \mathbb{N}$. For $n\in \mathbb{N}$, a \textit{factor} $B$ of the infinite word $\omega$ of length $n=|B|$ is the image of a set of $n$ consecutive positive integers by $\omega$, $B=\omega(\{ i,i+1,\ldots, i+n-1\})=x_ix_{i+1}\cdots x_{i+n-1}$. The \textit{sum} of the factor $B$ is $\sum B=x_i+x_{i+1}+\cdots +x_{i+n-1}$. A factor $B=\omega(\{ 1,2,\ldots, n\})=x_1x_{2}\cdots x_{n}$ is called a \textit{prefix} of $\omega$. \begin{theorem} The following statements are equivalent: \begin{itemize} \item[(1)] For all $k>1$, every infinite word on $\{1, 2, \ldots , k\}$ has two adjacent factors with equal length and equal sum. \item[(1a)] For all $k>1$, there exists $R = R(k)$ such that every word on $\{1, 2, \ldots , k\}$ of length $R$ has two adjacent factors with equal length and equal sum. \item[(2)] For all $n > 1$, if $x_1 < x_2 < x_3 <\cdots$ is an infinite sequence of positive integers such that $x_{i+1} - x_i \leq n$ for all $i > 1$, then there exist $1 \leq i < j < k$ such that $x_i + x_k = 2x_j$ and $i + k = 2j$. \item[(2a)] For all $n>1$, there exists $S = S(n)$ such that if $x_1 < x_2 < x_3 < \cdots < x_S$ are positive integers with $x_{i+1} - x_i \leq n$ whenever $1 \leq i \leq S - 1$, then there exist $1 \leq i < j < k \leq S$ such that $x_i + x_k = 2x_j$ and $i + k = 2j$. \item[(3)] For all $t > 1$, if $\mathbb{N} = A_1 \cup A_2 \cup \cdots \cup A_t$, then there exists $q$, $1\leq q \leq t$, such that if $A_q = \{x_1 < x_2 < \cdots\}$, then there are $1 \leq i < j < k$ such that $x_i + x_k = 2x_j$ and $i + k = 2j$. \item[(3a)] For all $t > 1$, there exists $T = T(t)$ such that for all $a > 1$, if $\{a, a + 1, \ldots , a + T - 1\} = A_1 \cup A_2 \cup \cdots \cup A_t$, then there exists $q$, $1 \leq q \leq t$, such that if $A_q = \{x_1 < x_2 < \cdots < x_p\}$, then there are $1 \leq i < j < k$ such that $x_1 + x_k = 2x_j$ and $i + k = 2j$. \end{itemize} \end{theorem} \begin{remark} Note that in (3) and (3a) the statements concern coverings and not partitions (colorings). This turns out to be essential, since if we used colorings in (3) and (3a) (call these new statements (3') and (3a')), then (3') would not imply (2), although (2) would still imply (3a'). This can be seen from the proofs below. \end{remark} \begin{remark} In each case $i = 1,2,3$, the statement {\it (ia)} is the finite form of the statement {\it (i)}. \end{remark} \begin{proof} We start by proving that (2) implies (2a). (The proof that (1) implies (1a) follows the same form, and is a little more routine.) Suppose that (2a) is false. Then there exists $n$ such that for all $S > 1$ there are $x_1 < x_2 < x_3 < \cdots < x_S$, with $x_{i+1} - x_i \leq n$ whenever $1 \leq i \leq S - 1$, such that there do not exist $1 \leq i < j < k \leq S$ such that $x_i + x_k = 2x_j$ and $i + k = 2j$. Replace $x_1 < x_2 < x_3 < \cdots < x_S$ by its characteristic binary word (of length $x_S$) $$B_S = b_1 b_2 b_3 \cdots b_{x_S}$$ defined by $b_i = 1$ if $i$ is in $\{x_1 , x_2 , x_3, \ldots , x_S\}$, and $b_i = 0$ otherwise. Let $H$ be the (infinite) collection of binary words obtained in this way. Note that if $B_S$ is in $H$, then each pair of consecutive 1s in $B_S$ is separated by at most $n-1$ 0s. Now construct, inductively, an infinite binary word $w$ such that each prefix of $w$ is a prefix of infinitely many words $B_S$ in $H$ in the following way. Let $w_1$ be a prefix of an infinite set $H_1$ of words in $H$. Let $w_1 w_2$ be a prefix of an infinite set $H_2$ of words in $H_1$. And so on. Set $w = w_1 w_2 \cdots $ . Define $x_1 < x_2 < x_3 < \cdots$ so that $w$ is the characteristic word of $x_1 < x_2 < x_3 < \cdots $ and note that $x_{i+1} - x_i \leq n$ for all $i> 1$. Now it follows that there cannot exist $1 \leq i < j < k$ with $x_1 + x_k = 2x_j$ and $i + k = 2j$. (For these $i, j, k$ would occur inside some prefix of $w$. But that prefix is itself a prefix of some word $B_S = b_1 b_2 b_3 \cdots b_S$, where there do not exist such $i, j, k$.) Thus if (2a) is false, (2) is false. Next we prove that (3) implies (3a). Suppose that (3a) is false. Then there exists $t$ such that for all $T$ there is, without loss of generality, a covering $\{1, 2, \ldots , T \} = A_1 \cup A_2 \cup \cdots \cup A_t$ such that there does not exist $q$ with $A_q = \{x_1 < x_2 < \cdots < x_p\}$ and $i < j < k$ with $x_1 + x_k = 2x_j$ and $i + k = 2j$. Represent the cover $\{1, 2, \ldots , T \} = A_1 \cup A_2 \cup \cdots \cup A_t$ by a word $B_T = b_1 b_2 b_3 \cdots b_T$ on the alphabet consisting of the non-empty subsets of $\{1,2,\ldots ,t\}$. Here for each $i$, $1 \leq i \leq T$, $b_i = \{ \mbox{the set of }p, 1 \leq p \leq t, \mbox{ such that } i \mbox{ is in }A_p\}$. Let $H$ be the set of all words $B_T$ obtained in this way. Construct an infinite word $w$, on the alphabet consisting of the non-empty subsets of $\{1,2,\ldots,t\}$, such that each prefix of $w$ is a prefix of infinitely many of the words $B_T$ in $H$. Thus $w$ represents a cover $\mathbb{N} = A_1 \cup A_2 \cup \cdots \cup A_t$, where $A_i = \{j \ge 1 \mbox{ such that $i$ is in }w_j\}$, $1 \leq i \leq t$, for which there does not exist $i$, $A_i = \{x_1 < x_2 < \cdots \}$, with $1 \leq i < j < k$ such that $x_1 + x_k = 2x_j$ and $i + k = 2j$, contradicting (3). It is not difficult to show that (1) is equivalent to (2), that (1) is equivalent to (1a), that (2a) implies (2), and that (3a) implies (3). We have shown that (2) implies (2a) and that (3) implies (3a). The final steps are: Proof that (3) implies (2). If $n$ and $A_0 = \{x_1 < x_2 < x_3 < \cdots \}$ are given, with $x_{i+1} - x_i \leq n$ for all $i > 1$, let $A_i = A_0 + i$, $0 \leq i \leq n - 1$. Then $\mathbb{N} = A_0 \cup A_1 \cup \cdots \cup A_{n-1}$, and now (3) implies (2). Proof that (2) implies (3a). Assume (2), and use induction on $t $ to show that if $\mathbb{N} = A_0 \cup A_1 \cup \cdots \cup A_{t-1}$, then there exists $q$, $0 \leq q \leq t-1$, with $A_q = \{x_1 < x_2 < \cdots \}$ for which there exist $i < j < k$ with $x_i + x_k = 2x_j$ and $i + k = 2j$. For $t = 1$ this is trivial. Fix $t > 1$, assume the statement 3a for this $t$, and let $\mathbb{N} = A_0 \cup A_1 \cup \cdots \cup A_t$. If $A_t = \{x_1 < x_2 < \cdots \}$ is either finite or there exists $n$ with $x_{i+1} - x_i \leq n$ for all $i > 1$, then we are done by 2. Otherwise, there are arbitrarily long intervals $[a, b] = B$ which are subsets of $A_0 \cup A_1 \cup \cdots \cup A_{t-1}$, and we are done by the induction hypothesis. \end{proof} \begin{remark} If true, perhaps (3a) can be proved by a method such as van der Waerden's proof that any finite coloring of $\mathbb{N}$ has a monochromatic 3-AP. \end{remark} Here is another remark on double 3-term arithmetic progressions. \begin{theorem} The following two statements are equivalent: \begin{itemize} \item[(1)] For all $n\geq 1$, every infinite sequence of positive integers $x_1