On the Finiteness of Semigroups in Which $x^r = x$

Thomas C. Brown Communicated by P. Hall

Citation data: T.C. Brown, On the finiteness of semigroups in which $x^r = r$, Proc. Cambridge Philos. Soc. 60 (1964), 1028–1029.

In this note we present a new proof of the following theorem (see [1]).

Theorem 1. For each $r, r \ge 2$, every finitely generated semigroup in which $x^r = x$ holds identically is finite if and only if every finitely generated group of exponent r - 1 is finite.

Notation. Throughout, *r* is fixed and S_k denotes a semigroup on *k* generators in which $x^r = x$. The elements of S_k are regarded as equivalence classes of words in *k* symbols X_1, \ldots, X_k . Upper case letters will denote words, and lower case letters the elements of the semigroup S_k ; thus if the word *W* represents the element *w* of S_k , we write $W \in w \in S_k$, and also say that *W*

Proof of Theorem. One direction is trivial. For the other, we use induction on k; S_1 is obviously finite, and we suppose that S_{k-1} is finite. By Remark 1, there is a number m such that if |X| = m, where X is a minimal word of S_k , then X is complete in the k symbols X_1, \ldots, X_k .

Let W be any minimal word of S_k ; then