%%%% THIS FILE IS AUTOMATICALLY GENERATED %%%% DO NOT EDIT THIS FILE DIRECTLY, %%%% ONLY EDIT THE SOURCE, tom-58/document.tex. %%%% %% Standard package list \documentclass[letterpaper]{article} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[english]{babel} \usepackage[top=3cm, bottom=3cm, left=3.5cm, right=3.5cm]{geometry} \usepackage[onehalfspacing]{setspace} \usepackage{amsmath,amssymb,amsthm,wasysym} \usepackage{nicefrac,booktabs} \usepackage{mathptmx} \usepackage{cite} \usepackage[colorlinks=true]{hyperref} %% Various helpers for Tom's papers \newcommand{\gs}{\textnormal{gs}} \newcommand{\ord}{\textnormal{ord}} \newcommand{\Exp}{\textnormal{Exp}} \newcommand{\Log}{\textnormal{Log}} \newcommand{\lcm}{\textnormal{lcm}} \newcommand{\range}{\textnormal{range}} \newcommand{\NR}{\textnormal{NR}} \newcommand{\Mod}[1]{\left(\textnormal{mod}~#1\right)} \newcommand{\ap}[2]{\left\langle #1;#2 \right\rangle} \newcommand{\summ}[1]{\sum_{k=1}^m{#1}} \newcommand{\bt}[1]{{{#1}\mathbb{N}}} \newcommand{\fp}[1]{{\left\lbrace{#1}\right\rbrace}} \newcommand{\intv}[1]{{\left[1,{#1}\right]}} %% Lifted from http://stackoverflow.com/questions/2767389/referencing-a-theorem-like-environment-by-its-name %% This lets me do things like "Theorem A" and have the references work properly. \makeatletter \let\@old@begintheorem=\@begintheorem \def\@begintheorem#1#2[#3]{% \gdef\@thm@name{#3}% \@old@begintheorem{#1}{#2}[#3]% } \def\namedthmlabel#1{\begingroup \edef\@currentlabel{\@thm@name}% \label{#1}\endgroup } \makeatother % end lift \newtheoremstyle{namedthrm} {}{}{}{}{}{}{ } % This last space needs to be there {\bf\thmname{#1} \thmnote{#3}.} %% End reference hack %% Document start \date{} \begin{document} %% Content start \newtheorem{cor}{Corollary} \newtheorem{lemma}{Lemma} \newtheorem*{spern}{Sperner's Lemma} \newtheorem*{thm}{Theorem} \newtheorem{q}{Problem} \theoremstyle{definition} \newtheorem*{defn}{Definition} \newtheorem*{ack}{Acknowledgements} \title{Behrend's Theorem for Sequences Containing No $k$-Element Arithmetic Progression of a Certain Type} \author{T. C. Brown} \date{} \maketitle \begin{center}{\small {\bf Citation data:} T.C. {Brown}, \emph{Behrend's theorem for sequences containing no $k$-element arithmetic progression of a certain type}, J. Combin. Theory Ser. A \textbf{18} (1975), 352--356.}\bigskip\end{center} \begin{abstract} Let $k$ and $n$ be positive integers, and let $d(n,k)$ be the maximum density in $\{0,1,2\dots,k^n - 1\}$ of a set containing no arithmetic progression of $k$ terms with first term $a = \sum a_ik^i$ and common difference $d = \sum \epsilon_i k^i$, where $0 \leq a_i \leq k - 1$, $\epsilon_i = 0$ or 1, and $\epsilon_i = 1 \Rightarrow a_i = 0$. Setting $\beta_k = \lim_{n \to \infty} d(n,k)$, we show that $\lim_{k \to \infty} \beta_k$ is either $0$ or $1$. \end{abstract} Throughout, we shall use the notation $[a,b) = \{a,a+1,a+2,\dots,b-1\}$, for nonnegative integers $a< b$. Also, if $S$ is a set of nonnegative integers, then $S(m)$ denotes $|S \cap [0,m)|$. The upper asymptotic density of $S$ will be denoted by $\bar{d}(S)$. Thus \[ \bar{d}(S) = \limsup_{m \to \infty} m^{-1}S(m). \] Similarly, the lower asymptotic density of $S$ is \[ \underline{d}(S) = \liminf_{m \to \infty} m^{-1}S(m). \] Let $r_k(n)$ denote the largest cardinal of a subset $A$ of $[0,n)$ such that $A$ contains no arithmetic progression of $k$ terms, and let $\rho_k = \lim_{n \to \infty} n^{-1}r_k(n)$. (This idea was introduced by Erd\H{o}s, Tur\'{a}n, and Szekeres in~\cite{erdos+turan1936}, and then convergence of $n^{-1}r_k(n)$ is shown in~\cite{behrend1938}.) K. F. Roth~\cite{roth1953} proved $\rho_3 = 0$ in 1953 and E. Szemer\'{e}di~\cite{szemeredi1975} has shown that $\rho_k = 0$ for all $k$. Previous to these results, Felix Behrend~\cite{behrend1938} proved in 1937 that $\lim_{k \to \infty} \rho_k$ equals either $0$ or $1$. In this paper we prove the analogous result where $\rho_k$ is replaced by $\beta_k$, the definition of $\beta_k$ being similar to that of $\rho_k$ except that only arithmetic progressions of a certain type are considered. (At the time of this writing, the only known values for $\beta_k$ are $\beta_1 = \beta_2 = 0$.) The main idea for the proof is taken diresctly from Behrend's paper. \begin{defn} For each positive integer $k$, a \emph{$k$-diagonal} is an arithmetic progression on $k$ terms with first term $a = \sum a_ik^i$ and common difference $d = \sum \epsilon_ik^i$, where for each $i$, $0 \leq a_i \leq k-1$, $\epsilon_i = 0$ or 1, and $\epsilon_i = 1 \Rightarrow a_i = 0$. \end{defn} Note that $k$ integers form a $k$-diagonal if and only if their $k$-ary representations can be put into the rows of a matrix in such a way that each column of the matrix, reading from top to bottom, is either $iii \cdots i$, for some $i$ depending on the column, or $012\cdots k-1$. For example, $\{2,5,8\}$ is a $3$-diagonal which contains no 2-diagonal. \begin{defn} For positive integers $n,k,$ let \[ d(n,k) = k^{-n}|A|, \] where $A$ is a subset of $[0,k^n)$ which has largest cardinal while not containing any $k$-diagonal. \end{defn} Thus for each fixed, $k$, we consider only the intervals $[0,k^n)$, $n = 1,2,\dots,$, the reason for this is that we can think of $[0,k^n)$ as the set of all $n$-tuples on the $k$ symbols $0,1,\dots,k-1$, which seems to be an advantage. The following lemma is proved in~\cite{alspach+brown+hell1976}. \begin{lemma} \label{lemma: 1} For each fixed $k$, $\{d(n,k)\}_{n=1}^\infty$ decreases. For each fixed $n$, $\{d(n,k)\}_{k=1}^\infty$ increases. \end{lemma} Using this lemma, we can make the following definition. \begin{defn} \begin{align*} \beta_k &= \lim_{n \to \infty} d(n,k), \qquad \textup{for $k = 1,2,\dots$.} \\ \beta &= \lim_{k \to \infty} \beta_k. \end{align*} \end{defn} Note that $0 \leq \beta_1 \leq \beta_2 \leq \beta_3 \leq \cdots \leq \beta \leq 1$. As remarked earlier, our object is to prove that $\beta$ is 0 or 1. We also remarked that the only currently known values of $\beta_k$ are $\beta_1 = 0$ and $\beta_2 = 0$. The first follows directly from the definition of $\beta_1$. The second follows from observing that if $A \subset [0,2^n)$ then we may regard the elements of $A$ (in binary notation) as characteristic functions of subsets of $\{1,2,\dots,n\}$. It is then easy to see that $A$ contains a $2$-diagonal $\{x,y\}$ if and only if ther corresponding subsets $X$ and $Y$ of $\{1,2,\dots,n\}$ satisfy $X \subset Y$ or $Y \subset X$. It then follows by Sperner's lemma that if $A$ has no 2-diagonal then $|A| \leq \binom{n}{\lfloor n/2 \rfloor}$, and therefore $d(n,2) = 2^{-n} \binom{n}{\lfloor n/2 \rfloor} \to 0$ as $n \to \infty$, that is, $\beta_2 = 0$. \begin{lemma} \label{lemma: 2} If $S$ is a set of nonnegative integers with upper density $\bar{d}(S) > \beta_k$, then $S$ contains a $k$-diagonal. \end{lemma} \begin{proof} Let $\epsilon > 0$ be such that $m^{-1}S(m) > \beta_k + \epsilon$ for infinitely many $m$. Choose $n$ so that $d(n,k) < \beta_k + \epsilon/2$, and now choose $m$ so that $\beta_k + \epsilon < m^{-1}S(m)$ and $m^{-1}k^n < \epsilon/2$. Finally, choose $b$ so that $bk^n \leq m < (b + 1)k^n$. If $S$ contains no $k$-diagonal, then in any interval $[ak^n,(a + 1)k^n)$ $S$ can have density at most $d(n,k)$, that is, \[ |S \cap [ak^n,(a + 1)k^n)| \leq k^nd(n,k). \] Therefore $S(m) \leq S(bk^n) + k^n \leq bk^nd(n,k) + k^n$, hence \[ \beta_k + \epsilon < m^{-1}S(m) \leq d(n,k) + m^{-1}k^n < \beta_k + \epsilon/2 + \epsilon/2. \] Therefore $S$ contains a $k$-diagonal. \end{proof} \begin{lemma} \label{lemma: 3} For each $k$ there is a set $S$ with $\bar{d}(S) \geq \beta_k$ which does not contain a $k^2$-diagonal. \end{lemma} \begin{proof} Choose positive integers $n_1 \beta_{k^2}$. Next choose $\epsilon > 0$ so that $\epsilon < \frac{1}{4} ( \beta_k - \beta\beta_{k^2})$, and using Lemma~\ref{lemma: 3} let $S$ be a set of nonnegative integers with $\bar{d}(S) \geq \beta_k$ which contains no $k^2$-diagonal. Next, choose $n$ large enough that if $A \subset [0,k^{2n})$ and $|A| > (\beta_{k^2} + \epsilon)k^{2n}$ then $A$ must contain a $k^2$-diagonal. For each $j = 0,1,\dots$ let $B_j = S \cap [jk^{2n},(j+1)k^{2n})$. We now partition the nonnegative integers $j$ into $2^{k^{2n}}$ classes as follows. For each $\sigma \subset [0,k^{2n})$, $j$ belongs to the class $C_\sigma$ if and only if $B_j$ is a translate of $\sigma$. There are now two main steps in the proof. The first is to show that $\bar{d}\left( \bigcup_{\sigma \ne \phi} C_\sigma \right) > \beta$; the second is, using this, to extract a $k^2$-diagonal from $S$, contrary to our initial assumption. To show that $\bar{d}\left(\bigcup_{\sigma \ne \phi} C_\sigma \right) > \beta$, we will show that $\underline{d}(C_\phi) < 1- \beta$. Let $\underline{d}(C_\phi) = \xi$, and choose $m$ so that $C_\phi(m) > (\xi - \epsilon)m$ and $S(mk^{2n}) > (\beta_k - \epsilon)mk^{2n}$. Then $\left(\bigcup_{\sigma \ne \phi} C_\sigma \right)(m) < (1 - \xi + \epsilon)m$, and for every $j$, $|B_j| \leq (\beta_{k^2} + \epsilon)k^{2n}$. Hence \begin{align*} S(mk^{2n}) &= \left| \bigcup \left\{B_j: j \in [0,m) \cap \left( \bigcup_{\sigma \ne \phi} C_\sigma \right) \right\} \right| \\ &< (\beta_{k^2} + \epsilon)k^{2n} \cdot (1 - \xi + \epsilon)m, \end{align*} hence \[ \beta_k - \epsilon < (\beta_{k^2} + \epsilon)(1 - \xi + \epsilon), \] \begin{align*} \xi &\leq [(1 + \epsilon)(\beta_{k^2} + \epsilon) - \beta_k + \epsilon]/(\beta_{k^2} + \epsilon) \\ &< (\beta_{k^2} - \beta_k + 4\epsilon)/\beta_{k^2} < 1 - \beta, \end{align*} by the choice of $\epsilon$. This completes the first step. For the final step in the proof, choose by Lemma~\ref{lemma: 5} an integer $p$ large enough that if $[0,k^{2pn})$ is partitioned into $2^{k^{2n} - 1}$ classes, then at least one class will contain a $k^{2n}$-diagonal. Since we now know that $\bar{d}\left(\bigcup_{\sigma \ne \phi}C_\sigma \right) > \beta \geq \beta_{k^{2pn}}$, it follows from Lemma~\ref{lemma: 2} that $\bigcup_{\sigma \ne \phi} C_\sigma$ contains a $k^{2pn}$-diagonal $D = \{a_i: i \in [0,k^{2pn})\}$. Let us now partition the indices $i$ of the elements of $D$ into classes $C_\sigma'$ according to the rule $i \in C_\sigma' \Leftrightarrow a_i \in C_\sigma$. Then by the choice of $p$ there is a $k^{2n}$-diagonal $J \subset [0,k^{2pn})$ which is contained in a single class, say $J \subset C_{\sigma_0}'$. This means that $D' = \{a_j:j \in J\}$. is contained in $C_{\sigma_0}$. But by Lemma~\ref{lemma: 4}(a), $D'$ is a $k^{2n}$-diagonal. Thus we now have that the $k^{2n}$ sets $B_{a_j} = S \cap [a_jk^{2n},(a_j + 1)k^{2n})$, $j \in J$, are all translates of $\sigma_0$, and $D' = \{a_j: j \in J\}$ is a $k^{2n}$-diagonal. Since $\sigma_0 \ne \phi$, we may choose $\ell \in \sigma_0$. Then $D'' = \{k^{2n}a_j + \ell: j \in J\} \subset S$, and by Lemma~\ref{lemma: 4}(b) $D''$ is a $k^{2n}$-diagonal. But then the first $k^2$ elements of this $k^{2n}$-diagonal are a $k^2$-diagonal in $S$, contrary to assumption. Thus the proof is complete. \end{proof} \nocite{szemeredi1969} \bibliographystyle{amsplain} \bibliography{tom-all} \end{document}