%%%% THIS FILE IS AUTOMATICALLY GENERATED %%%% DO NOT EDIT THIS FILE DIRECTLY, %%%% ONLY EDIT THE SOURCE, tom-57/document.tex. %%%% %% Standard package list \documentclass[letterpaper]{article} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[english]{babel} \usepackage[top=3cm, bottom=3cm, left=3.5cm, right=3.5cm]{geometry} \usepackage[onehalfspacing]{setspace} \usepackage{amsmath,amssymb,amsthm,wasysym} \usepackage{nicefrac,booktabs} \usepackage{mathptmx} \usepackage{cite} \usepackage[colorlinks=true]{hyperref} %% Various helpers for Tom's papers \newcommand{\gs}{\textnormal{gs}} \newcommand{\ord}{\textnormal{ord}} \newcommand{\Exp}{\textnormal{Exp}} \newcommand{\Log}{\textnormal{Log}} \newcommand{\lcm}{\textnormal{lcm}} \newcommand{\range}{\textnormal{range}} \newcommand{\NR}{\textnormal{NR}} \newcommand{\Mod}[1]{\left(\textnormal{mod}~#1\right)} \newcommand{\ap}[2]{\left\langle #1;#2 \right\rangle} \newcommand{\summ}[1]{\sum_{k=1}^m{#1}} \newcommand{\bt}[1]{{{#1}\mathbb{N}}} \newcommand{\fp}[1]{{\left\lbrace{#1}\right\rbrace}} \newcommand{\intv}[1]{{\left[1,{#1}\right]}} %% Lifted from http://stackoverflow.com/questions/2767389/referencing-a-theorem-like-environment-by-its-name %% This lets me do things like "Theorem A" and have the references work properly. \makeatletter \let\@old@begintheorem=\@begintheorem \def\@begintheorem#1#2[#3]{% \gdef\@thm@name{#3}% \@old@begintheorem{#1}{#2}[#3]% } \def\namedthmlabel#1{\begingroup \edef\@currentlabel{\@thm@name}% \label{#1}\endgroup } \makeatother % end lift \newtheoremstyle{namedthrm} {}{}{}{}{}{}{ } % This last space needs to be there {\bf\thmname{#1} \thmnote{#3}.} %% End reference hack %% Document start \date{} \begin{document} %% Content start \newtheorem{cor}{Corollary} \newtheorem{lemma}{Lemma} \newtheorem*{spern}{Sperner's Lemma} \newtheorem*{thm}{Theorem} \newtheorem{q}{Problem} \theoremstyle{definition} \newtheorem*{defn}{Definition} \newtheorem*{ack}{Acknowledgements} \title{A Proof of Sperner's Lemma via Hall's Theorem} \author{T. C. Brown} \date{} \maketitle \begin{center}{\small {\bf Citation data:} T.C. {Brown}, \emph{A proof of Sperner's lemma via Hall's theorem}, Proc. Camb. Philos. Soc. \textbf{78} (1975), 387.}\bigskip\end{center} \emph{Sperner's Lemma.} Let $S$ be a Sperner set of subsets of $\{1,2,\dots,n\}$. (That is, for $A,B \in S$, if $A \ne B$ then $A \not\subset B$ and $B \not\subset A$.) Then $|S| \leq \binom{n}{\lfloor n/2 \rfloor}$. \begin{lemma} \label{lemma: 1} Let $A_1,\dots,A_m$ be distinct $k$-element subsets of $\{1,2,\dots,n\}$, where $k \geq \lfloor n/2 \rfloor + 1$. Let $\mathcal{B}_i = \{B \subset A_i: |B| = k-1\}$ $( 1 \leq i \leq m)$. Then $\{\mathcal{B}_1, \dots, \mathcal{B}_m\}$ has a system of distinct representatives. \end{lemma} \begin{proof}[Proof of lemma] We use Hall's Theorem, and to simplify notation we show only that $| \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_m| \geq m$. Let $B \in \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_m$, and let \[ e = \{i: B \in \mathcal{B}_i\} = \{i: B \subset A_i\}. \] Since the $A_i$ are distinct $k$-element sets and $|B| = k-1$, we have $n \geq k - 1 + |e|$, and this with $k \geq \lfloor n/2 \rfloor + 1$ gives $|e| \leq k$. Then since $|\mathcal{B}_i| = k$ $(1 \leq i \leq m)$, we obtain $|\mathcal{B}_1 \cup \cdots \cup \mathcal{B}_m| \geq km/k = m$. \end{proof} \begin{proof}[Proof of Sperner's Lemma] Let $k = \max\{|A|: A \in S\}$. If $k \geq \lfloor n/2 \rfloor + 1$, let \[ \{A_1, \dots,A_m\} = \{A \in S: |A| = k\}. \] By the lemma, there are distinct sets $\phi(A_i)$ $(1 \leq i \leq m)$, such that $\phi(A_i) \subset A_i$ and $|\phi(A_i)| = k -1$. Thus in $S$ we may replace each $A_i$ by $\phi(A_i)$ $(1 \leq i \leq m)$, to obtain a new Sperner set $S'$ such that $|S'| = |S|$ and $A \in S' \Rightarrow |A| \leq k - 1$. Repeating this process as many times as required, we obtain a Sperner set $S^*$ such that $|S^*| = |S|$ and $A \in S^* \Rightarrow |A| \leq \lfloor n/2 \rfloor$. Now let $T = \{\{1,2,\dots,n\}\setminus A: A \in S^*\}$. Then $T$ is a Sperner set, $|T| = |S|$, and \[ A \in T \Rightarrow |A| \geq \lfloor n/2 \rfloor. \] Thus, applying the above process to $T$, we obtain finally a Sperner set $T^*$ such that $|T^*| = |S|$ and $A \in T^* \Rightarrow |A| = \lfloor n/2\rfloor$. Thus $|S| \leq \binom{n}{\lfloor n/2 \rfloor}$. \end{proof} \nocite{hall1935,lubell1966,sperner1928} \bibliographystyle{amsplain} \bibliography{tom-all} \end{document}