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Abstract

The multiset P = {ay,...,ax} is a k-term arithmetic progression modulo n if a; # a, (mod n)
anday—aj; =az—ap=--- =ax —a_1 (mod n). For k odd and k > 3, we find explicit constnats
& < 1—1/k such that for any n # k and for any subset A of [0,n — 1], if |A| > gn then A contains a
k-term arithmetic progression modulo n. (e3 = .5 and &5 is about .77.)

1 Introduction

For each real number £ > 0 and positive integers k and ng, let S(&,k,np) denote the following statement.
S(g,k,np): For every n > ng, and for every subset A of [0,n— 1], if |A| > en then A contains a k-term
arithmetic progression.
Then Szemerédi’s theorem [2] asserts that for every € > 0 and k, there exists a least positive integer
no = no(€,K) such that S(e, k,ng) holds.
One can ask the following quantitative questions. (Answering them, of course, is something else!)
(a) Given £ > 0 and k, what is ng[() ()]






When m+1 >k, (2) is equivalent to
ms—1 ms — 2 ms —k 42
m(m+1)<2'<m—1><m—2>'<m—k+2>’ @

and each factor on the right hand side of (4) is greater than s. Therefore when m+1 > k, (2) holnds
provided m(m 4 1) < 2-s%~2, which in turn holds provided (m +1)% < 2-s*2, or

m<V2sk/21 g, (5)

Now when k < v/2s¥/2-1, we can find an integer m such thatk < m+1 < v/2s/2=Land m > /2s¥/2-1 2,
which gives (1).

Only a small number of pairs (s,k) have k > v/2s*/2~1 (namely (s,k) = (2,3), (2,4), (2,5), (2,6),
(3,3), (4,3)), and these can be checked separately, giving (1) in all cases. O

Theorem 2. Define the numbers g, for odd k > 3, as follows. Let e3=1/2. Fork=2m+1, m > 2, let

L k+1f [ k%2

Then & < 1—1/k, and for 9.964 veru78g.9626 Tf 6.365 0 Td [()0 [(1)]TI/F11 9.9626 Tf 4.982 0 T123n0 m 20.082 [(1)]TI/F1:
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For each pair x,x+Yy (y # 0) of elements of A, the (distinct) elements wy = x—y, Wy, = X+ 2y
are excluded from A, since A contains no 3-progression modulo p. (All arithmetic operations here are
modulo p.)

Also, given distinct elements wq,w, in [0, p — 1], there are unique X,y (y # 0) in [0, p — 1] such that
X—Yy =wj and X+ 2y = ws.

It easily follows that each excluded pair {w1,w;} is excluded only once, so that the (“zp) pairs of
elements of A exclude (%) distinct pairs {ws,w,} from A. The union of these (%°) distinct pairs of
elements has at least acp elements.

Thus ap=|A| < p—ap, and o < 1/2, as required. O

Case 2. The case k > 3. From now on, for convenience, we abbreviate “k-progression modulo p" to “k-
progression™.

Letk=2m+1, m> 2. Let p be prime, p >k, AC[0,p—1], |A] = ap, and assume that A contains
no k-progression.

We need to show that o < &. (One can check directly that g < 1 —1/k. &5 is about 0.77.)

The argument proceeds essentially as in the case k = 3:

Each (k — 1)-progression contained in A el operations here are



(When k
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