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Abstract

The multiset P = fa1; : : : ;akg is a k-term arithmetic progression modulo n if a1 6� a2 (mod n)

and a2 � a1 � a3 � a2 � �� � � ak � ak�1 (mod n). For k odd and k � 3, we find explicit constnats

εk < 1�1=k such that for any n 6= k and for any subset A of [0;n�1], if jAj > εkn then A contains a

k-term arithmetic progression modulo n. (ε3 = :5 and ε5 is about .77.)

1 Introduction

For each real number ε > 0 and positive integers k and n0, let S(ε;k;n0) denote the following statement.
S(ε;k;n0): For every n� n0, and for every subset A of [0;n�1], if jAj> εn then A contains a k-term

arithmetic progression.
Then Szemerédi’s theorem [2] asserts that for every ε > 0 and k, there exists a least positive integer

n0 = n0(ε;k) such that S(ε;k;n0) holds.
One can ask the following quantitative questions. (Answering them, of course, is something else!)
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When m+1� k, (2) is equivalent to
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and each factor on the right hand side of (4) is greater than s. Therefore when m+ 1 � k, (2) holnds
provided m(m+1)� 2 � sk�2, which in turn holds provided (m+1)2 � 2 � sk�2, or

m�
p

2sk=2�1�1: (5)

Now when k�p2sk=2�1, we can find an integer m such that k�m+1�p2sk=2�1 and m>
p

2sk=2�1�2,
which gives (1).

Only a small number of pairs (s;k) have k >
p

2sk=2�1 (namely (s;k) = (2;3), (2;4), (2;5), (2;6),
(3;3), (4;3)), and these can be checked separately, giving (1) in all cases.

Theorem 2. Define the numbers εk, for odd k � 3, as follows. Let ε3 = 1=2. For k = 2m+1, m� 2, let

εk = 1� k+1
k+2
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Then εk < 1� 1=k, and for  9.964 veru78g.9626 Tf 6.365 0 Td [(�)0 [(1)]TJ/F11 9.9626 Tf 4.982 0 T123n0 m 20.082 [(1)]TJ/F11 9.9626 T [(1)] m 0k



For each pair x;x + y (y 6= 0) of elements of A, the (distinct) elements w1 = x� y, w2 = x + 2y

are excluded from A, since A contains no 3-progression modulo p. (All arithmetic operations here are
modulo p.)

Also, given distinct elements w1;w2 in [0; p�1], there are unique x;y (y 6= 0) in [0; p�1] such that
x� y = w1 and x+2y = w2.

It easily follows that each excluded pair fw1;w2g is excluded only once, so that the
�
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elements has at least α p elements.
Thus α p = jAj � p�α p, and α � 1=2, as required.

Case 2. The case k > 3. From now on, for convenience, we abbreviate “k-progression modulo p" to “k-
progression".

Let k = 2m+1, m � 2. Let p be prime, p > k, A � [0; p�1], jAj= α p, and assume that A contains
no k-progression.

We need to show that α � εk. (One can check directly that εk < 1�1=k. ε5 is about 0.77.)
The argument proceeds essentially as in the case k = 3:
Each (k� 1)-progression contained in A el operations here are

k+
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