Some Quantitative Aspects of Szemerédi's Theorem Modulo *n*

T. C. Brown

Citation data: T.C. Brown, *Some quantitative aspects of Szemerédi's theorem modulo n*, congressus Numerantium **43** (1984), 169–174.

Abstract

The multiset $P = \{a_1, ..., a_k\}$ is a *k*-term arithmetic progression modulo *n* if $a_1 \not\equiv a_2 \pmod{n}$ and $a_2 - a_1 \equiv a_3 - a_2 \equiv \cdots \equiv a_k - a_{k-1} \pmod{n}$. For *k* odd and $k \ge 3$, we find explicit constnats $\varepsilon_k < 1 - 1/k$ such that for any $n \neq k$ and for any subset *A* of [0, n-1], if $|A| > \varepsilon_k n$ then *A* contains a *k*-term arithmetic progression modulo *n*. ($\varepsilon_3 = .5$ and ε_5 is about .77.)

1 Introduction

For each real number $\varepsilon > 0$ and positive integers k and n_0 , let $S(\varepsilon, k, n_0)$ denote the following statement.

 $S(\varepsilon, k, n_0)$: For every $n \ge n_0$, and for every subset A of [0, n-1], if $|A| > \varepsilon n$ then A contains a k-term arithmetic progression.

Then Szemerédi's theorem [2] asserts that for every $\varepsilon > 0$ and k, there exists a least positive integer $n_0 = n_0(\varepsilon, k)$ such that $S(\varepsilon, k, n_0)$ holds.

One can ask the following quantitative questions. (Answering them, of course, is something else!) (a) Given $\varepsilon > 0$ and k, what is $n_0[()()]$ М(

When $m+1 \ge k$, (2) is equivalent to

$$m(m+1) < 2 \cdot \left(\frac{ms-1}{m-1}\right) \left(\frac{ms-2}{m-2}\right) \cdot \left(\frac{ms-k+2}{m-k+2}\right),\tag{4}$$

and each factor on the right hand side of (4) is greater than *s*. Therefore when $m + 1 \ge k$, (2) holnds provided $m(m+1) \le 2 \cdot s^{k-2}$, which in turn holds provided $(m+1)^2 \le 2 \cdot s^{k-2}$, or

$$m \le \sqrt{2}s^{k/2-1} - 1.$$
 (5)

Now when $k \le \sqrt{2}s^{k/2-1}$, we can find an integer *m* such that $k \le m+1 \le \sqrt{2}s^{k/2-1}$ and $m > \sqrt{2}s^{k/2-1}-2$, which gives (1).

Only a small number of pairs (s, k) have $k > \sqrt{2}s^{k/2-1}$ (namely (s, k) = (2,3), (2,4), (2,5), (2,6), (3,3), (4,3)), and these can be checked separately, giving (1) in all cases.

Theorem 2. Define the numbers ε_k , for odd $k \ge 3$, as follows. Let $\varepsilon_3 = 1/2$. For k = 2m + 1, $m \ge 2$, let

$$\varepsilon_k = 1 - \frac{k+1}{k+2} \left(\sqrt{m^2 + \frac{k+2}{k+1}} - m \right).$$
 (6)

Then $\varepsilon_k < 1 - 1/k$, and for 9.964 veru78g.9626 Tf 6.365 0 Td [()0 [(1)]TJ/F11 9.9626 Tf 4.982 0 T123n0 m 20.082 [(1)]TJ/F1

For each pair x, x + y ($y \neq 0$) of elements of A, the (distinct) elements $w_1 = x - y$, $w_2 = x + 2y$ are excluded from A, since A contains no 3-progression modulo p. (All arithmetic operations here are modulo p.)

Also, given distinct elements w_1 , w_2 in [0, p-1], there are unique $x, y (y \neq 0)$ in [0, p-1] such that $x - y = w_1$ and $x + 2y = w_2$.

It easily follows that each excluded pair $\{w_1, w_2\}$ is excluded only once, so that the $\binom{\alpha p}{2}$ pairs of elements of *A* exclude $\binom{\alpha p}{2}$ distinct pairs $\{w_1, w_2\}$ from *A*. The union of these $\binom{\alpha p}{2}$ distinct pairs of elements has at least αp elements.

Thus $\alpha p = |A| \le p - \alpha p$, and $\alpha \le 1/2$, as required.

Case 2. The case k > 3. From now on, for convenience, we abbreviate "*k*-progression modulo *p*" to "*k*-progression".

Let k = 2m + 1, $m \ge 2$. Let p be prime, p > k, $A \subset [0, p - 1]$, $|A| = \alpha p$, and assume that A contains no k-progression.

We need to show that $\alpha \leq \varepsilon_k$. (One can check directly that $\varepsilon_k < 1 - 1/k$. ε_5 is about 0.77.) The argument proceeds essentially as in the case k = 3:

Each (k-1)-progression contained in A el operations here are

(When k