
On Finitely Generated Idempotent Semigroups



e 2 T1\T2. Then for all x;y 2 T1[T2, as a first step

e(xy)e = (eye)(xy)(exe) = e(yexyex)e = e(yex)e = (eye)(exe) = ee = e

If x;y;z 2 T1[T2, then using e(xy)e = e,

xyz = (xex)(yeey)(zez) = x(exye)(eyze)z = xeez = x(exze)z = (xex)(zez) = xz

Hence by the maximality of T1;T2 we have T1 = T1[T2 = T2.

Let the equivalence relation on S corresponding to the partition in Lemma 2.2 be denoted by �, and
let the equivalence class containing an element x of S be denoted by Tx. Thus for x;y 2 S, Tx = Ty , x�

y, [both x and y belong to some maximal element of T ].

Lemma 2.3. For all x;y 2 S, Tx = Ty , [xyx = x and yxy = y].

Proof. One direction is trivial. Suppose now that xyx = x and yxy = y. Then the set fx;yg satisfies the
identity xyz = xz, so by Lemma 2.1 can be extended to a maximal element of T .

Lemma 2.3 shows that Tx = Ty , SxS[fxg= SyS[fyg, so that the sets Tx are the J-classes of S.

Lemma 2.4. For all x;y 2 S, xy� yx. Furthermore, � is a congruence on S, that is, for all x;y;x0;y0 2 S,

if x� x0 and y� y0 then xy� x0y0.

Proof. Clearly (xy)(yx)(xy) = xy and (yx)(xy)(yx) = yx, hence by Lemma 2.3, xy � yx. Now assume
that x� x0 and y� y0. Then

xy = (xx0x)(yy0y)� (x0xx0)(y0yy0) = x0y0

Let Q(S) = S= �



Theorem 2.1. For all n� 1, every idempotent semigroup S on n generators is finite.

Proof. Let S have generators g1;g2; : : : ;gn. The proof has just two ingredients. The first is the fact
that if C(x) =C(z) = fg1;g2; : : : ;gng, then for any y 2 S, C(x) =C(yz) =C(z), so that x;yz;z 2 Tx and
xyz = x(yz)z = xz. The second ingredient is a natural definition of the length of an element of S. The
length of an element of S is defined below, and the proof of the theorem is then identical with the proof
below.

3 The Second Proof

Let S be an idempotent semigroup generated by g1;g2; : : : ;gn. Let us call an element x 2 S complete if
for each i, 1 � i � k, there are elements ai and bi of S such that x = aigibi. For example, x = g1g2 � � �gn

is complete. For each x 2 S, the length of x, denoted by jxj, is the minimum k such that x = x1x2 � � �xk,
where xi 2 fg1;g2; : : : ;gng, 1� i� k. Note that jxj � 1 for all x 2 S.

Lemma 3.1. If w 2 S and w is complete, then w = wxw for all x 2 S.

Proof. Let w 2 S be complete. We show that w = wxw for all x 2 S by induction on jxj. If jxj = 1 then
w = axb since w is complete, and

w = (ax)b = (axax)b

= a(xaxb) = a(xaxbxaxb)

= (axax)bxaxb = (ax)bxaxb

= (axb)x(axb) = wxw

For the induction step, let jxj> 1 and assume that w = wyw for all y 2 S with jyj< jxj. Let x = yz, where
jyj< jxj and jzj< jxj. Then w = wyw and w = wzw, so

w = ww = (wzw)wyw) = wzwyw

= w(zwy)w = w(zwyzwy)w

= (wzw)yz(wyw) = wyzw = wxw

Lemma 3.2. If x;y;z 2 Sn, and x;z are complete, then xyz = xzx)wxw



z. By Lemma 3.2, w = xyz = xz, so jwj � jxj+ jzj = 2(tn+1 + 1), a contradiction. Hence tn exists and
tn � 2(tn�1+1).
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