On Finitely Generated Idempotent Semigroups

 $e \in T_1 \cap T_2$. Then for all $x, y \in T_1 \cup T_2$, as a first step

$$
e(xy)e = (eye)(xy)(exe) = e(yexyex)e = e(yex)e = (eye)(exe) = ee = ee
$$

If $x, y, z \in T_1 \cup T_2$, then using $e(xy)e = e$,

$$
xyz = (xex)(yeey)(zez) = x(exye)(eyze)z = xeez = x(exze)z = (xex)(zez) = xz
$$

Hence by the maximality of T_1 , T_2 we have $T_1 = T_1 \cup T_2 = T_2$.

Let the equivalence relation on *S* corresponding to the partition in Lemma [2.2](#page-0-0) be denoted by \sim , and let the equivalence class containing an element *x* of *S* be denoted by T_x . Thus for $x, y \in S$, $T_x = T_y$ $x \sim$ *y* [both *x* and *y* belong to some maximal element of].

Lemma 2.3. *For all x,* $y \in S$ *,* $T_x = T_y$ $[xyx = x$ *and* $yxy = y$ *].*

Proof. One direction is trivial. Suppose now that $xyx = x$ and $yxy = y$. Then the set $\{x, y\}$ satisfies the identity $xyz = xz$, so by Lemma [2.1](#page-0-1) can be extended to a maximal element of \Box \Box

Lemma [2.3](#page-1-0) shows that $T_x = T_y$ *SxS* \cup {*x*} = *SyS* \cup {*y*}, so that the sets T_x are the *J*-classes of *S*.

Lemma 2.4. *For all x*, $y \in S$, $xy \sim yx$. Furthermore, \sim is a congruence on S, that is, for all x, y, x', $y' \in S$, *if* $x \sim x'$ and $y \sim y'$ then $xy \sim x'y'$.

Proof. Clearly $(xy)(yx)(xy) = xy$ and $(yx)(xy)(yx) = yx$, hence by Lemma [2.3,](#page-1-0) $xy \sim yx$. Now assume that $x \sim x'$ and $y \sim y'$. Then

$$
xy = (xx'x)(yy'y) \sim (x'xx')(y'yy') = x'y'
$$

 \Box

 \Box

Let $Q(S) = S / \sim .3T$ [(0)]TJETqTd [(s1G [-32c4 0 Td [(Q)]TJ/F8 9.9626 Tf 7.193 0 Td [(()]TJ/F83 9.9626 Tf 3.866 0 Td [(**Theorem 2.1.** *For all n* \geq 1, *every idempotent semigroup S on n generators is finite.*

Proof. Let *S* have generators g_1, g_2, \ldots, g_n . The proof has just two ingredients. The first is the fact that if $C(x) = C(z) = \{g_1, g_2, \ldots, g_n\}$, then for any $y \in S$, $C(x) = C(yz) = C(z)$, so that $x, yz, z \in T_x$ and $xyz = x(yz)z = xz$. The second ingredient is a natural definition of the *length* of an element of *S*. The length of an element of *S* is defined below, and the proof of the theorem is then identical with the proof below. *x* of *y* energy and *x* is the first is the fact $-C(X) \geq C(X)$, so that $X/2 \geq T$, and $X/2 \leq T$, and $x \leq T$ and the energy of an element of S . The theorem is then Identical with the proof. \square

Let us call an element

3 The Second Proof

Let *S* be an idempotent semigroup generated by g_1, g_2, \ldots, g_n . Let us call an element $x \in S$ *complete* if for each $i, 1 \leq i \leq k$, there are elements a_i and b_i of S such that $x=a_ig_ib_i$. For example, $x=g_1g_2\cdots g_n$ is complete. For each $x \in S$, the *length* of *x*, denoted by $|x|$, is the minimum *k* such that $x = x_1 x_2 \cdots x_k$, where $x_i \in \{g_1, g_2, \ldots, g_n\}$, $1 \le i \le k$. Note that $|x| \ge 1$ for all $x \in S$.

Lemma 3.1. *If* $w \in S$ *and w is complete, then* $w = wxw$ for all $x \in S$ *.*

Proof. Let $w \in S$ be complete. We show that $w = w \times w$ for all $x \in S$ by induction on |x|. If $|x| = 1$ then *w* = *axb* since *w* is complete, and

$$
w = (ax) b = (axax) b
$$

= $a(xaxb) = a(xaxbxaab)$
= $(axax)bxaxb = (ax)bxaxb$
= $(axb)x(axb) = wxw$

For the induction step, let $|x| > 1$ and assume that $w = wyw$ for all $y \in S$ with $|y| < |x|$. Let $x = yz$, where $|y| < |x|$ and $|z| < |x|$. Then $w = wyw$ and $w = wzw$, so

$$
w = ww = (wzw) wyw) = wzwyw
$$

$$
= w(zwy) w = w(zwzywy) w
$$

$$
= (wzw) yz(wyw) = wyzw = wxw
$$

Lemma 3.2. *If x, y, z* \in *S*_{*n*}, and x, *z* are complete, then xyz = xzx

z. By Lemma [3.2,](#page-2-0) $w = xyz = xz$, so $|w| \le |x| + |z| = 2(t_{n+1} + 1)$, a contradiction. Hence t_n exists and $t_n \leq 2(t_{n-1} + 1)$. \Box

References

- [1] T.C. Brown, *On the finiteness of semigroups in which* $x^r = r$ *,* Proc. Cambridge Philos. Soc. 60 (1964), 1028–1029.
- [2] J.A. Green and D. Rees, *On semi-groups in which x^r* = *x*, Proc. Cambridge Philos. Soc. 48 (1952), 35–40.
- [3] Gérard Lallement, *Semigroups and combinatorial applications*, Pure and Applied Mathematics. A Wiley-interscience Publication, John Wiley & Sons, New York-Chichester-Brisbane, 1979.
- [4] Earl Lazerson, *Idempotent semigroups*, Working Paper No. 38, Communications Research Division, Institute for Defense Analyses, von Neumann Hall, Princeton, NJ, 1961.
- [5] M. Lothaire (ed.), *Combinatorics on words*, Cambridge University Press, Cambridge Mathematical Library, Cambridge, 1997, Corrected reprint of the 1983 original, with a new preface by Perrin.
- [6] David McLean, *Idempotent semigroups*, Amer. Math. Monthly 61 (1954), 110–113.