


of previously known values w(3;3;2) = 9, w(4;4;2) = 35, and w(5;5;2) = 178. A list of other known
exact values of w(k;m;2) appears in [15]. Improved lower bounds on several specific values of w(k;k;s)
are given in [3] and [10].

In another direction, Graham [7] gives an elegant proof that if one defines w1(k;3) to be the least
n such that every 2-coloring of [1;n] gives either k consecutive integers in the first color or a 3-term
arithmetic progression in the second color, then

kc logk < w1(k;3) < kdk2
;

for suitable constants c;d > 0. This immediately gives w(k;3;2 < kdk2
since we trivially have w(k;3;2)�

w1(k;3). In view of Graham’s bounds on w1(k;3), it would be desirable to obtain improved bounds on
w(k;3;2). Of particular interest is the question of whether or not there is a non-polynomial lower bound
for w(k;3;2).

In this note we give a lower bound of w(k;3;2) > k(2�o(1)). Although this may seem weak, we
do know that w(k;3;2) < k2 for 5 � k � 16 (i.e., for all known values of w(k;3;2) with k � 5; see
Table 2). More generally, we give a lower bound on w(k;m;2) for arbitrary fixed m. We also present a
lower bound for the classical van der Waerden numbers w(k;k; : : : ;k;s) that is a slight improvement over
previously published bounds. In addition, we present an upper bound for w(k;4;2) and an upper bound
for w(4;4; : : : ;4;s).

2 Upper and lower bounds for certain van der Waerden functions

We shall need several definitions, which we collect here.
For positive integers k and n,

rk(n) = max
S�[1;n]

fjSj : S contains no k-term arithmetic progression g:

For positive integers k and m, denote by ck(m) the minimum number of colors required to color [1;m] so
that there is no monochromatic k-term arithmetic progression.

The function w1(k;3) has been defined in Section 1. Similarly, we define w1(k;4) to be the least n

such that every 2-coloring of [1;n] has either k consecutive integers in the first color or a 4-term arithmetic
progression in the second color.

We begin with an upper bound for w1(k;4). The proof is essentially the same as the proof given by
Graham [7] of an upper bound for w1(k;3). For completeness, we include the proof here. We will make
use of a recent result of Green and Tao [9], who showed that for some constant c > 0,

r4(n) < ne�c
p

log logn (1)

for all n� 3.

Proposition 1. There exists a constant c > 0 such that w1(k;4) < ekc logk
for all k � 2.

Proof. Suppose we have a 2-coloring of [1;n] (assume n � 4) with no 4-term arithmetic progression of
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the second color and no k consecutive integers of the first color. Let t1 < t2 < � � � < tm be the integers
of the second color. Hence, m < r4(n). Let us define t0 = 0 and tm+1 = n. Then there must be some i,
1� i� m, such that

ti+1� ti >
n

2r4(n)
:

(Otherwise, using r4(n)� 3, we would have n = ∑
m
i=0(ti+1� ti)� n(m+1)

2r4(n) �
n(r4(n)+1)

2r4(n) � n
2 + n

6 .)
Using (1), we now have an i with

ti+1� ti >
n

2r4(n)
>

1
2

ec
p

log logn:

If n � ekd logk
, d = c�2, then 1

2 ec
p

log logn � k and we have k consecutive integers of the first color, a
contradiction. Hence, n < ekd logk

and we are done.

Clearly w(k;4;2)� w1(k;4). Consequently, we have the following result.

Corollary 2. There exists a constant d > 0 such that w(k;4;2) < ekd logk
for all k � 2.

Using Green and Tao’s result, it is not difficult to obtain an upper bound for w(4;4; : : : ;4;s).

Proposition 3. There exists a constant d > 0 such that w(4;4; : : : ;4;s) < esd logs
for all s� 2.

Proof. Consider a c4(m)-coloring of [1;m] for which there is no monochromatic 4-term arithmetic pro-
gression. Some color must be used at least m

c4(m) times, and hence m
c4(m) � r4(m) so that m

r4(m) � c4(m).

Let c > 0 be such that (1) holds for all n� 3, and let m = esd logs
, where d = c�2. Then c4(m)� m

r4(m) >

ec
p

log logm = s. This means that every s-coloring of [1;m] has a monochromatic 4-term arithmetic pro-
gression. Since m = esd logs

, the proof is complete.

It is interesting that the bounds in Corollary 2 and Proposition 3 have the same form.
The following theorem gives a lower bound on w(k;k; : : : ;k;s). It is deduced without too much

difficulty from the Symmetric Hypergraph Theorem as it appears in [8], combined with an old result
of Rankin [17]. To the best of our knowledgg



Proof. We make use of the observation that for positive integers s and m, if s� ck(m), then w(k;k; : : : ;k;s) >

m, which is clear from the definitions. For large enough m, (2) gives

ck(m) <
2m logm

rk(m)

�
1+

1
2

�
=

3m logm
rk(m)

: (4)

Now let d =
� 1

2c

�z+1
, where c is from (3), and let m = sd(logs)z

, where s is large enough so that (4)

holds. By (3), noting that logm = d(logs)z+1 =
�

logs
2c

�z+1
, we have

m
rk(m)

< ec(logm)
1

z+1 = ec� logs
2c =

p
s:

Therefore,
3m logm

rk(m)
< 3d

p
s(logs)z+1 < s

for sufficiently large s. Thus, for sufficiently large s,

ck(m) <
3m logm

rk(m)
< s:

According to the observation at the beginning of the proof, this implies that w(k;k; : : : ;k;s) > m =
sd(logs)z

, as required.

We now give a lower bound on w(k;m;2). We make use of the Lovász Local Lemma (see [8] for a
proof), which will be implicitly stated in the proof.

Theorem 5. Let m� 3 be fixed. Then for all sufficiently large k,

w(k;m;2) > km�1� 1
loglogk :

Proof. Given m, choose k > m large enough so that

k
1

2m log logk >

�
m� 1

2loglogk

�
logk (5)

and
6 <

logk
log logk

: (6)

Next, let n =
j

km�1� 1
loglogk

k
. To prove the theorem, we will show that there exists a (red, blue)-

coloring of [1;n] for which there is no red k-term arithmetic progression and no blue m-term arithmetic
progression.

For the purpose of using the Lovász Local Lemma, randomly color [1;n] in the following way. For
each i 2 [1;n], color i red with probability p = 1� ka�1 where

a :=
1

2m log logk
;

and color it blue with probability 1� p.
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Let P be any k-term arithmetic progression. Then, since 1+ x� ex, the probability that P is red is

pk = (1� ka�1)k �
�

e�ka�1
�k

= e�ka

:

Hence, applying (5), we have

pk <

�
1
e

��m� 1
2loglogk

�
logk

=
1

km� 1
2loglogk

:

Also, for any m-term arithmetic progression Q, the probability that Q is blue is

(1� p)m = (ka�1)m =
1

km� 1
2loglogk

:

Now let P1;P2; : : : ;Pt be all of the arithmetic progressions in [1;n] with length k or m. So that we may
apply the Lovász Local Lemma, we form the “dependency graph” G by setting V (G)= fP1;P2; : : : ;Ptg
and E(G) = ffPi;P jg : i = j;Pi \P j 6= ∅g. For each Pi 2 V (G), let d(Pi) denote the degree of
the vertex Pi in G, i.e., jfe 2 E(G) : Pi 2 egj. We now estimate d(Pi) from above. Let x 2 [1;n]. The
number of k-term arithmetic progressions P in [1;n] that contain x is bounded above by k � n

k�1 , since
there are k positions that x may occupy in P and since the gap size of P cannot exceed n

k�1 . Similarly,
the number of m-term arithmetic progressions Q in [1;n] that contain x is bounded above by m � n

m�1 .
Let Pi be any k-term arithmetic progression contained in [1;n]. The total number of k-term arith-

metic progressions P and m-term arithmetic progressions Q in [1;n] that may have nonempty intersec-
tion with Pi is bounded above by

k
�

k � n
k�1

+m � n
m�1

�
< kn

�
2+

2
m�1

�
; (7)

since k > m. Thus, d(Pi) < kn(2 + 2
m�1 ) when jPij = k. Likewise, d(Pi) < mn(2 + 2

m�1 ) when
jPij= m. Thus, for all vertices Pi of G, we have d(Pi) < kn(2+ 2

m�1 ).
To finish setting up the hypotheses for the Lov’asz Local Lemma, we let Xi denote the event that the

arithmetic progression Pi is red if jPij = k, or blue if jPij = m, and we let d = max1��t d(Pi). We
have seen above that for all i, 1� i� t, the probability that Xi occurs is at most

q :=
1

km� 1
2loglogk

;

while from (7) we have d < 2kn(1+ 1
m�1 ).



Table 1: Small values of w(k;3) and w1(k;3)
k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
w(k;3;2) 6 9 18 22 32 46 58 77 97 114 135 160 186 218 238
w1(k;3) 9 23 34 73 113 193 ? ? ? ? ? ? ? ? ?

d < 3kn, so that d +1 < 3kn+
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