Cancellation in Semigroups in Which $x^2 = x^3$

Tom C. Brown

Communicated by G. Lallement

Citation data: T.C. Brown, *Cancellation in semigroups in which* $x^2 = x^3$, Semigroup Forum **41** (1990), 49–53.

1 Introduction

Let B(k, m, n) denote the semigroup generated by *k* elements and satisfying the identity $x^m = x^n$, where $0 \le m < n$. That is, B(k, m, n) is the free semigroup on *k* generators in the variety of semigroups defined by the law $x^m = x^n$ (we are following the notation of Lallement [7]).

Green and Rees [6] showed that for each $n \ge 1$, the semigroups B(k, 1, n) are finite for all $k \ge 1$ if and only if the groups B(k, 0, n-1) are finite for all $k \ge 1$. Thus in particular all semigroups in which $x = x^2$ are locally finite, and so are all semigroups in which $x = x^3$. The word problem for semigroups in which $x = x^3$ was solved by Gerhard [5].

The existence of an infinite sequence on 3 symbols in which there are no two consecutive indentical blocks shows that B(3,2,3)

What could be the largest possible numerical value of such a constant *c*? This is the subject of the present note.

2 An Upper Bound for the Constant *c*

Since the value of *c* depends on *k*, the number of generators of *S*, we make the following definition.

Definition. Let $g_1, g_2, \ldots, g_k, \ldots$, be a sequence so that for each $k \ge 1, g_1, g_2, \ldots, g_k$ is a set of generators for the semigroup $B_k = B(k, 2, 3)$, and let $B_w = B_1 \cup B_2 \cup \cdots$. For each $k \ge 1$, let c_k be the largest real number such that for all $x \in B_k$ and all $i, 1 \le i \le k, |g_i x| \ge c_k |x|$. Similarly, let c_w be the largest real number such that for all $x \in B_w$ and all $i \ge 1, |g_i x| \ge c_w |x|$.

Note that if C_k is the set of all real numbers c such that $|g_i x| \ge c |x|$ for $1 \le i \le k$ and $x \in B_k$, then $c_k = \sup C_k = \max C_k$.

Since $2 = |g_1(g_1)^2| \ge c_1 |(g_1)^2| = 2c_1$, we have $1 = c_1$, and since $B_w \supseteq B_{k+1} \supseteq B_k$, we have $c_k \ge c_{k+1} \ge c_w$, so that

$$1 = c_1 \geq c_2 \geq \cdots \geq c_k \geq c_{k+1} \geq \cdots \geq c_w \geq 0.$$

It is easy to see that $2/3 \ge c_w$. For let $A = g_2g_3 \cdots g_p$ nd $x = Ag_1Ag_1A$. Then |x| = 3p - 1 and $|g_1x| = |g_1Ag_1A| = 2p$, so that for all $p \ge 2$,

$$\left(\frac{2}{3} + \frac{2}{9\rho - 3}\right)|x| = |g_1 x| \ge c_w |x|.$$

B, C, F, G, then $B \approx F$ and $C \approx G$. Then, if the shortest product of generators which equals $ag_1bg_1cg_1$ contains at least three g_1s , it contains only three g_1s , and $|ag_1bg_1cg_1| = |a| + |b| + |c| + 3$. If the shortest such product contains only two g_1s , then it is not hard to see that a = b = c.

Lemma 2. Define elements x_n, y_n in B_w for all $n \ge 2$ inductively as follows. Let $x_2 = g_2, y_2 = g_1g_2$. For $n \ge 2$, let $x_{n+1} = x_n y_n g_{n+1}, y_{n+1} = x_n y_n^2 g_{n+1}$. Then for $n \ge 2$, $|g_1 x_{n+1} y_{n+1}| = |g_1 x_n y_n| + |x_n y_n^2| + 2$ and $|x_{n+1} y_{n+1}^2| = |x_n y_n| + 2|x_n y_n^2| + 3$.

Proof. This follows from Lemma 1, with the g_{n+1} in Lemma 2 playing the role of g_1 in Lemma 1. One needs to know that $x_{n+1} \neq y_{n+1}$. But if $x_{n+1} = y_{n+1}$, then $x_n y_n = x_n y_n^2$, and this implies (by Lemma 1) that $x_{n-1}y_{n-1} = x_{n-1}y_{n-1}^2$.

Proposition. Let t denote the golden mean, $t = (1 + \sqrt{5})/2 \approx 1.618$. Then $t - 1 \ge c_w$.

Proof. In our calculation, we will make use of the Fibonacci numbers F_n , where $F_0 = F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$, and the fact that F_n/F_{n+1} converges to 1/t.

For $n \ge 2$, let x_n, y_n be defined as in Lemma 2. Then by induction it follows that for all $n \ge 2$, $g_1x_ny_n^2 = g_1x_ny_n$. By Lemma 2 and induction it follows that for all $n \ge 2$, $|g_1x_ny_n| = F_{2n-3} + F_{2n-1}$, $|x_ny_n^2| = F_{2n-2} + F_{2n} - 2$.

Then for all $n \ge 2$,

$$c_{w} \leq \frac{|g_{1}x_{n}y_{n}^{2}|}{|x_{n}y_{n}^{2}|} = \frac{|g_{1}x_{n}y_{n}|}{|x_{n}y_{n}^{2}|} = \frac{F_{2n-3} + F_{2n-1}}{F_{2n-2} + F_{2n} - 2} \rightarrow 1/t = t - 1,$$

and it follows that $c_w \leq t - 1$.

3 An Open Question

It would be interesting to know the exact values of c_2 and c_w , and inparticular whether $c_2 > 0$, and whether $c_w > 0$.

References

- T.C. Brown, A semigroup union of disjoint locally finite subsemigroups which is not locally finite, Pacific J. Math. 22 (1967), 11–14.
- [2] J.A. Brzozowski, K. Culik II, and A Gabrielian, *Classification of noncounting events*, J. Comput. Syst. Sci. 5 (1971), 243–271.
- [3] R. Dean, A sequence without repeats on x, x⁻¹, y, y⁻¹, Am. Math. Mon. **72** (1965), 383–385.
- [4] F. Dejean, Sur un théorème de Thue, J. Comb. Theor. A13 (1972), 90–99.
- [5] J.A. Gerhard, *The word problem for semigroups satisfying* $x^3 = x$, Math. Proc. Camp. Phil. Soc. **84** (1978), 11–19.

- [6] J.A. Green and D. Rees, *On semi-groups in which* $x^r = x$, Proc. Cambridge Philos. Soc. **48** (1952), 35–40.
- [7] Gérard Lallement, Semigroups and combinatorial applications