%%%% THIS FILE IS AUTOMATICALLY GENERATED %%%% DO NOT EDIT THIS FILE DIRECTLY, %%%% ONLY EDIT THE SOURCE, tom-3/document.tex. %%%% %% Standard package list \documentclass[letterpaper]{article} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[english]{babel} \usepackage[top=3cm, bottom=3cm, left=3.5cm, right=3.5cm]{geometry} \usepackage[onehalfspacing]{setspace} \usepackage{amsmath,amssymb,amsthm,wasysym} \usepackage{nicefrac,booktabs} \usepackage{mathptmx} \usepackage{cite} \usepackage[colorlinks=true]{hyperref} %% Various helpers for Tom's papers \newcommand{\gs}{\textnormal{gs}} \newcommand{\ord}{\textnormal{ord}} \newcommand{\Exp}{\textnormal{Exp}} \newcommand{\Log}{\textnormal{Log}} \newcommand{\lcm}{\textnormal{lcm}} \newcommand{\range}{\textnormal{range}} \newcommand{\NR}{\textnormal{NR}} \newcommand{\Mod}[1]{\left(\textnormal{mod}~#1\right)} \newcommand{\ap}[2]{\left\langle #1;#2 \right\rangle} \newcommand{\summ}[1]{\sum_{k=1}^m{#1}} \newcommand{\bt}[1]{{{#1}\mathbb{N}}} \newcommand{\fp}[1]{{\left\lbrace{#1}\right\rbrace}} \newcommand{\intv}[1]{{\left[1,{#1}\right]}} %% Lifted from http://stackoverflow.com/questions/2767389/referencing-a-theorem-like-environment-by-its-name %% This lets me do things like "Theorem A" and have the references work properly. \makeatletter \let\@old@begintheorem=\@begintheorem \def\@begintheorem#1#2[#3]{% \gdef\@thm@name{#3}% \@old@begintheorem{#1}{#2}[#3]% } \def\namedthmlabel#1{\begingroup \edef\@currentlabel{\@thm@name}% \label{#1}\endgroup } \makeatother % end lift \newtheoremstyle{namedthrm} {}{}{}{}{}{}{ } % This last space needs to be there {\bf\thmname{#1} \thmnote{#3}.} %% End reference hack %% Document start \date{} \begin{document} %% Content start \theoremstyle{plain}% default \newtheorem{thm}{Theorem}[section] \newtheorem{lem}[thm]{Lemma} \newtheorem{prop}[thm]{Proposition} \newtheorem*{cor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition}[section] \newtheorem{conj}{Conjecture}[section] \newtheorem{exmp}{Example}[section] \theoremstyle{remark} \newtheorem*{rem}{Remark} \newtheorem*{note}{Note} \newtheorem{case}{Case} \title{Chaotic orderings of the rationals and reals} \author{Hayri Ardal, Tom Brown, and Veselin Jungi\'{c}\footnote{Department of Mathematics, ¶¡ÏãÔ°AV, Burnaby, BC, Canada, V5A 1S6. \texttt{hardal@sfu.ca}, \texttt{tbrown@sfu.ca}, \texttt{vjungic@sfu.ca}.}} \maketitle \begin{center}{\small {\bf Citation data:} Hayri Ardal, Tom Brown, and Veselin Jungi\'c, \emph{Chaotic orderings of the rationals and reals}, Amer. Math. Monthly \textbf{118} (2011), 921--925.}\bigskip\end{center} \begin{abstract} In this note we prove that there is a linear ordering of the set of real numbers for which there is no monotonic 3-term arithmetic progression. This answers the question (asked by Erd\H{o}s and Graham) of whether or not every linear ordering of the reals must have a monotonic $k$-term arithmetic progression for every $k$. \end{abstract} % Introduction \section{Introduction.} Over the last few years there has been an increasing interest in combinatorial properties of linear orderings, also called infinite permutations, of various sets of real numbers. See for example \cite{avgust+frid+kamae+samilov2011,fon-der-flaass+frid2007,makarov2009,makarov2010}. In this note, answering a question of Erd\H{o}s and Graham \cite[pp.~21--22]{erdos+graham1980}, we show that there is a linear ordering $\ll$ of the set $\mathbb{R}$ of real numbers which has no monotonic 3-term arithmetic progression (AP). This means that there do not exist distinct real numbers $x$ and $y$ such that $x$ $\ll$ $\frac{1}{2}(x+y)$ $\ll y$. We call such an ordering {\it chaotic}. In general, for any set $X\subseteq \mathbb{R}$, a linear ordering $\ll$ of $X$ is {\it chaotic} if there do not exist distinct $x,y,z\in X$ such that $y=\frac{1}{2}(x+z)$ and $x\ll y \ll z$. Symbols such as ``$<$" or ``$\ge$" always refer to the usual order relation on $\mathbb{R}$. Our methods show that for every $k\ge2$ there is a linear ordering of $\mathbb{R}$ for which there are monotonic $k$-term AP's, but no monotonic $(k+1)$-term AP. A {\it monotonic $k$-term AP} in $\mathbb{R}$ (monotonic with respect to an ordering $\ll$) is a set $\{a_i$ : $0\le i\le k-1\}$ with $a_i =a_0 +id$, $0\le i\le k-1$, $d\ne 0$, such that $a_0\ll a_1\ll \cdots \ll a_{k-1}$. It has long been known that there are chaotic linear orderings of $\{1,2,\dots,n\}$ for every positive integer $n$ \cite{entringer+jackson1975,lyndon1975,odda1975,simmons1975,thomas1975}, but that for any arrangement of the positive integers into a sequence $a_{1},a_{2},\dots$, or even a doubly-infinite sequence $\dots ,a_{-2},a_{-1},a_{0},a_{1},a_{2},\dots$, there {\it does} exist a monotonic 3-term AP, that is, there are $i