%%%% THIS FILE IS AUTOMATICALLY GENERATED %%%% DO NOT EDIT THIS FILE DIRECTLY, %%%% ONLY EDIT THE SOURCE, tom-29/document.tex. %%%% %% Standard package list \documentclass[letterpaper]{article} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[english]{babel} \usepackage[top=3cm, bottom=3cm, left=3.5cm, right=3.5cm]{geometry} \usepackage[onehalfspacing]{setspace} \usepackage{amsmath,amssymb,amsthm,wasysym} \usepackage{nicefrac,booktabs} \usepackage{mathptmx} \usepackage{cite} \usepackage[colorlinks=true]{hyperref} %% Various helpers for Tom's papers \newcommand{\gs}{\textnormal{gs}} \newcommand{\ord}{\textnormal{ord}} \newcommand{\Exp}{\textnormal{Exp}} \newcommand{\Log}{\textnormal{Log}} \newcommand{\lcm}{\textnormal{lcm}} \newcommand{\range}{\textnormal{range}} \newcommand{\NR}{\textnormal{NR}} \newcommand{\Mod}[1]{\left(\textnormal{mod}~#1\right)} \newcommand{\ap}[2]{\left\langle #1;#2 \right\rangle} \newcommand{\summ}[1]{\sum_{k=1}^m{#1}} \newcommand{\bt}[1]{{{#1}\mathbb{N}}} \newcommand{\fp}[1]{{\left\lbrace{#1}\right\rbrace}} \newcommand{\intv}[1]{{\left[1,{#1}\right]}} %% Lifted from http://stackoverflow.com/questions/2767389/referencing-a-theorem-like-environment-by-its-name %% This lets me do things like "Theorem A" and have the references work properly. \makeatletter \let\@old@begintheorem=\@begintheorem \def\@begintheorem#1#2[#3]{% \gdef\@thm@name{#3}% \@old@begintheorem{#1}{#2}[#3]% } \def\namedthmlabel#1{\begingroup \edef\@currentlabel{\@thm@name}% \label{#1}\endgroup } \makeatother % end lift \newtheoremstyle{namedthrm} {}{}{}{}{}{}{ } % This last space needs to be there {\bf\thmname{#1} \thmnote{#3}.} %% End reference hack %% Document start \date{} \begin{document} %% Content start \newtheorem{rmrk}{Remark} \newtheorem{lmma}{Lemma} \newtheorem*{prop}{Proposition} \title{Powers of Digital Sums} \author{T. C. Brown\footnote{Department of Mathematics and Statistics, ¶¡ÏãÔ°AV, Burnaby, British Columbia, V5A 1S6, Canada. \texttt{tbrown@sfu.ca}}} \date{} \newcommand{\floor}[1]{{\left[{#1}\right]}} \newcommand{\ceil}[1]{{\left[{#1}\right]}} \maketitle \begin{center}{\small {\bf Citation data:} T.C. {Brown}, \emph{Powers of digital sums}, Fib. Quart. \textbf{32} (1994), 207--210.}\bigskip\end{center} \section{Introduction} Let $s(n)$ denote the sum of the base 10 digits of the nonnegative integer $n$, and let $\log x$ denote the base 10 logarithm of $x$. R. E. Kennedy and C. Cooper have shown \cite{cooper+kennedy1992} that for any positive integer $k$, \[ \frac1x\sum_{n\leq x}s(n)^k = \left(\frac92\right)^k\log^kx + O(\log^{k-\frac13}x), \] and they conjectured that for any positive integer $k$, \[ \frac1x\sum_{n\leq x}s(n)^k = \left(\frac92\right)^k\log^kx + O(\log^{k-1}x). \] Recently \cite{cooper+kennedy1993} the same authors have shown, providing some evidence for the truth of this conjecture, that for each fixed positive integer $k$, \[ \frac1{10^n}\sum_{i=0}^{10^n-1}s(i)^k = \left(\frac92\right)^kn^k + O(n^{k-1}). \] In this note, we extend the result just mentioned. When $k$ is a fixed positive integer, we show that for each $m$ it is true that \[ \frac1x\sum_{n\leq x}s(n)^k = \left(\frac92\right)^k\log^kx + O(\log^{k-1}x), \] provided that $x$ is restricted to the set of those positive integers having at most $m$ nonzero digits in their base 10 representations. (Thus, the Kennedy \& Cooper result is exactly the case $m = 1$.) We use the Kennedy \& Cooper result in the course of our proof. We state our result in the following form. \begin{prop} Let $m\geq1$ and $k\geq1$ be fixed integers. Then there is a constant $A = A(k,m)$ such that if $x$ is a positive integer with at most $m$ nonzero digits in its base 10 representation, \[ \left|\frac1x\sum_{i=0}^{x-1}s(i)^k - \left(\frac92\right)^k(\log x)^k\right| < A(\log x)^{k-1}. \] \end{prop} \section{Remarks and Lemmas} \begin{rmrk}\label{r1} It is easy to check that if $m,k$ are fixed positive integers and \[ \left|\frac1x\sum_{i=0}^{x-1}s(i)^k - \left(\frac92\right)^k\ceil{\log x}^k\right| < c\ceil{\log x}^{k-1}, \] then \[ \left|\frac1x\sum_{i=0}^{x-1}s(i)^k - \left(\frac92\right)^k(\log x)^k\right| < d(\log x)^{k-1}, \] where $\ceil{\cdot}$ denotes the greatest integer function and $d$ is a constant that depends only on $c$ and $k$.\end{rmrk} To see this, suppose $10^n\leq x\leq 10^{n+1}$, so that $n =\ceil{\log x}$. Let $\log x = n + \alpha$, where $0 \leq \alpha < 1$. Then \begin{align*} \left|\frac1x\sum_{i=0}^{x-1}\right.&\left.s(i)^k - \left(\frac92\right)^k(n+\alpha)^k\right| \\ &< \left|\frac1x\sum_{i=0}^{x-1}s(i)^k - \left(\frac92\right)^kn^k\right| + \left|\left(\frac92\right)^kn^k - \left(\frac92\right)^k(n+\alpha)^k\right| \\ &= \left|\frac1x\sum_{i=0}^{x-1}s(i)^k - \left(\frac92\right)^kn^k\right| + \left(\frac92\right)^k\fp{k\alpha n^{k-1} + \binom{k}2\alpha^2n^{k-2} + \cdots + \binom{k}k\alpha^k} \\ &< cn^{k-1} + c'n^{k-1} = dn^{k-1} \leq d(n+\alpha)^{k-1}. \end{align*} \begin{rmrk}\label{r2} In view of Remark \ref{r1}, to prove the Proposition above, it is sufficient (and convenient) to prove the following statement, which will be done by induction on $m$.\end{rmrk} For fixed positive integers $m$, $k$, there is an $A = A(k,m)$ such that if $10^n\leq x<10^{n+1}$ and $x$ has at most $m$ nonzero digits in its base 10 representation, then \[ \left|\frac1x\sum_{i=0}^{x-1}s(i)^k - \left(\frac92\right)^kn^k\right| < An^{k-1}. \] In the following three lemmas, $k,n,p,y$ and $t$ all denote integers. \begin{lmma}\label{l1} For each $k\geq1$, there is an $A(k)$ such that \[ \frac{n\cdot10^{p+1}}{10^n + 10^{p+1}}\left(1 - \left(\frac{p}{n}\right)^k\right) < A(k)\text{ for all }n,p\text{ with }1\leq p\leq n. \] \end{lmma}\begin{proof} Let $s = n - p - 1$. Then $-1\leq s \leq n - 2$ and \begin{align*} \frac{n\cdot10^{p+1}}{10^n + 10^{p+1}}\left(1 - \left(\frac{p}{n}\right)^k\right) &= \frac{n}{10^s + 1}\left(1 - \left(1 - \frac{s+1}n\right)^k\right) \\ &= \frac{n}{10^s + 1}\left(k\cdot\frac{s+1}{n} - \binom{k}2\frac{(s+1)^2}{n^2} + \binom{k}2\frac{(s+1)^3}{n^3} - \cdots - (-1)^k\binom{k}k\frac{(s+1)^k}{n^k}\right) \\ &= \frac{k\cdot(s+1)}{10^s+1} + o(1) < A(k). \end{align*}\end{proof} Note that for $i\geq2$, \[ \frac{n}{10^s + 1} \frac{(s+1)^i}{n^i} \leq \left(\max_{-1\leq s<\infty} \frac{(s+1)^i}{10^s + 1}\right)\cdot\frac1{n^{i-1}}\to0\text{ as }n\to\infty. \] \begin{lmma}\label{l2} Fix $k\geq1$. Let $A(k)$ be as in Lemma \ref{l1}. Then for any $y$ in the interval $10^p\leq y\leq 10^{p+1}\leq 10^n$ and any $t\geq1$, \[ \left|\frac{t\cdot10^n}{t\cdot10^n+y}\left(\frac92\right)^kn^k + \frac{y}{t\cdot10^n + y}\left(\frac92\right)^kp^k - \left(\frac92\right)^kn^k\right| < \left(\frac92\right)^kA(k)n^{k-1}. \] \end{lmma}\begin{proof} \begin{align*} \left|\frac{t\cdot10^n}{t\cdot10^n + y}n^k + \frac{y}{t\cdot10^n+y}p^k - n^k\right| &= n^k\frac{y}{t\cdot10^n+y}\left(1 - \left(\frac{p}n\right)^k\right) \\ &< n^k\frac{10^{p+1}}{t\cdot10^n + 10^{p+1}}\cdot\left(1 - \left(\frac{p}n\right)^k\right) \\ &\leq n^{k-1}\frac{n\cdot10^{p+1}}{10^n + 10^{p+1}}\left(1 - \left(\frac{p}n\right)^k\right) \\ &< A(k)\cdot n^{k-1}, \end{align*} where the last inequality is given by Lemma \ref{l1}. \end{proof} \begin{lmma}\label{l3} Let $t\geq1$ and $k\geq1$ be fixed. Then \[ \frac1{t\cdot10^n}\sum_{i=0}^{t\cdot10^n-1} s(i)^k = \left(\frac92\right)^kn^k + O(n^{k-1}). \] In other words, there is $B(t,k)$ with \[ \left| \frac1{t\cdot10^n}\sum_{i=0}^{t\cdot10^n-1} s(i)^k - \left(\frac92\right)^kn^k\right| < B(t,k)n^{k-1}. \] \end{lmma} To prove the Proposition, we will only need this lemma for $t = 1,2,\ldots,9$. \begin{proof} We use induction on $t$. For $t = 1$, this is the result of Kennedy \& Cooper mentioned above. Now fix $t\geq1$ and assume the result for this $t$. Then, using the fact that $s(t\cdot10^n + i) = s(t) + s(i)$, $0\leq i\leq 10^n-1$, \begin{align*} \left| \frac1{(t+1)\cdot10^n}\sum_{i=0}^{t\cdot10^n-1} s(i)^k - \left(\frac92\right)^kn^k\right| &\leq \left|\frac{t}{t+1}\left(\frac1{t\cdot10^n}\sum_{i=0}^{t\cdot10^n-1} s(i)^k - \left(\frac92\right)^k\right)\right| \\ &+ \left|\frac{1}{t+1}\left(\frac1{\cdot10^n}\sum_{i=0}^{t\cdot10^n-1} s(i)^k - \left(\frac92\right)^k\right)\right| \\ &+ \frac1{t+1}\cdot\frac1{10^n}\sum_{i=0}^{t\cdot10^n-1} (c_1s(i)^{k-1} + c_2s(i)^{k-2} + \cdots + c_k) \\ &< \frac{t}{t+1}B(t,k)n^{k-1} + \frac1{t+1}B(1,k)n^{k-1} + Cn^{k-1} \\ &< B(t+1,k)n^{k-1}. \end{align*} \end{proof} Note that we used the result of Kennedy \& Cooper a second time. Here $c_1,\ldots,c_k$, $C$ are constants that depend only on $k$ and $t$. \section{Proof of the Proposition} According to Remark \ref{r2}, we need to show that, for each $m\geq1$ and $k\geq1$, there is a constant $A(k,m)$ such that if $10^n\leq x<10^{n+1}$ and $x$ has at most $m$ nonzero digits in its base 10 representation, then \[ \left|\frac1x\sum_{i=0}^{x-1}s(i)^k - \left(\frac92\right)^k\right| < A(k,m)n^{k-1}. \] If $m=1$, this follows from Lemma \ref{l3} (for all $k$), since then $x = t\cdot10^n$, $1\leq t\leq 9$. Now assume the result for a given $m\geq1$, and let $x$ have $m+1$ nonzero digits, say, \[ 10^n\leq x<10^{n+1}, x = t\cdot10^n + y, 1\leq t\leq 9, 10^p\leq y<10^{p+1}\leq 10^n, \] where $y$ has $m$ nonzero digits. Then, using $s(t\cdot10^n + i) = t + s(i)$, \begin{align*} \left|\frac1x\sum_{i=0}^{x-1}s(i)^k - \left(\frac92\right)^k\right| &\leq \left|\frac{t\cdot10^n}{t\cdot10^n + y}\left(\frac1{t\cdot10^n}\sum_{i=0}^{t\cdot10^n-1} s(i)^k - \left(\frac92\right)^k\right)\right| \\ &+ \left|\frac{y}{t\cdot10^n+y}\left(\frac1y\sum_{i=0}^{y-1}s(i)^k - \left(\frac92\right)^k\right)\right| \\ &+ \frac{y}{t\cdot10^n + y}\cdot\frac1y\sum_{i=0}^{y-1}(c_1s(i)^{k-1} + c_2s(i)^{k-2} + \cdots + c_k) \\ &< A(k,1)n^{k-1} + A(k,m)p^{k-1} + Dp^{k-1} \\ &< A(k,m+1)n^{k-1}. \end{align*} Here $c_1,\ldots,c_k,D$ are constants that depend on $k$ and $t$, but since $1\leq t\leq 9$, they in fact depend only on $k$. For the second equality, we used Lemma \ref{l3} as well as the induction hypothesis. \bibliographystyle{amsplain} \bibliography{tom-all} \end{document}