%%%% THIS FILE IS AUTOMATICALLY GENERATED %%%% DO NOT EDIT THIS FILE DIRECTLY, %%%% ONLY EDIT THE SOURCE, tom-21/document.tex. %%%% %% Standard package list \documentclass[letterpaper]{article} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[english]{babel} \usepackage[top=3cm, bottom=3cm, left=3.5cm, right=3.5cm]{geometry} \usepackage[onehalfspacing]{setspace} \usepackage{amsmath,amssymb,amsthm,wasysym} \usepackage{nicefrac,booktabs} \usepackage{mathptmx} \usepackage{cite} \usepackage[colorlinks=true]{hyperref} %% Various helpers for Tom's papers \newcommand{\gs}{\textnormal{gs}} \newcommand{\ord}{\textnormal{ord}} \newcommand{\Exp}{\textnormal{Exp}} \newcommand{\Log}{\textnormal{Log}} \newcommand{\lcm}{\textnormal{lcm}} \newcommand{\range}{\textnormal{range}} \newcommand{\NR}{\textnormal{NR}} \newcommand{\Mod}[1]{\left(\textnormal{mod}~#1\right)} \newcommand{\ap}[2]{\left\langle #1;#2 \right\rangle} \newcommand{\summ}[1]{\sum_{k=1}^m{#1}} \newcommand{\bt}[1]{{{#1}\mathbb{N}}} \newcommand{\fp}[1]{{\left\lbrace{#1}\right\rbrace}} \newcommand{\intv}[1]{{\left[1,{#1}\right]}} %% Lifted from http://stackoverflow.com/questions/2767389/referencing-a-theorem-like-environment-by-its-name %% This lets me do things like "Theorem A" and have the references work properly. \makeatletter \let\@old@begintheorem=\@begintheorem \def\@begintheorem#1#2[#3]{% \gdef\@thm@name{#3}% \@old@begintheorem{#1}{#2}[#3]% } \def\namedthmlabel#1{\begingroup \edef\@currentlabel{\@thm@name}% \label{#1}\endgroup } \makeatother % end lift \newtheoremstyle{namedthrm} {}{}{}{}{}{}{ } % This last space needs to be there {\bf\thmname{#1} \thmnote{#3}.} %% End reference hack %% Document start \date{} \begin{document} %% Content start \newtheorem{thrm}{Theorem} \newtheorem*{corl}{Corollary} \newtheorem*{ackn}{Acknowledgement} \title{Sequences with Translates Containing Many Primes} \author{Tom C. Brown\footnote{Partially supported by NSERC.}, Peter Jau-Shyong Shiue and X. Y. Yu\footnote{Supported by the National Science Grant of the P.R. of China and the Science Grant of Zhejiang Province, P.R. China.}} \maketitle \begin{center}{\small {\bf Citation data:} T.C. Brown, P.~J.-S. Shiue, and X.Y. Yu, \emph{Sequences with translates containing many primes}, Canad. Math. Bull. \textbf{41} (1998), 15--19.}\bigskip\end{center} \begin{abstract}Garrison \cite{garrison1990}, Forman \cite{forman1992}, and Abel and Siebert \cite{abel+siebert1993} showed that for all positive integers $k$ and $N$, there exists a positive integer $\lambda$ such that $n^k+\lambda$ is prime for at least $N$ positive integers $n$. In other words, there exists $\lambda$ such that $n^k+\lambda$ represents at least $N$ primes. We give a quantitative version of this result. We show that there exists $\lambda\leq x^k$ such that $n^k+\lambda$, $1\leq n\leq x$, represents at least $\left(\frac1k + o(1)\right)\pi(x)$ primes, as $x\to\infty$. We also give some related results. \end{abstract} \section{Introduction} In \cite{abel+siebert1993}, Abel and Siebert make the wonderful observation that if $A = \{a_n\}$ is a sequence of natural numbers and $A(x) = \sum_{a_n\leq x}1$, then \[ \sum_{\lambda\leq2x}\sum_{a_n\leq x}\sum_{p=a_n+\lambda} 1 \geq [\pi(2x) - \pi(x)]A(x), \] where $p$ denotes a prime and $\pi(x)$ denotes the number of primes $p\leq x$. They used this inequality, together with Chebyshev's inequalities, to show that if $\limsup_{x\to\infty}\frac{A(x)}{\log x}=\infty$, then for all $N$ there exists $\lambda$ such that $a_n+\lambda$ represents at least $N$ primes. Forman \cite{forman1992} obtained the same result with methods different from those of Abel and Siebert. Earlier, Sierpenski \cite{sierpinski1964} showed that $n^2+\lambda$ represents arbitrarily many primes. Then Garrison \cite{garrison1990} extended this to $n^k+\lambda$. Forman \cite{forman1992} and Abel and Siebert \cite{abel+siebert1993} showed that $g(n)+\lambda$ represents arbitrarily many primes, where $g(x)$ is any polynomial with integer coefficients and positive leading coefficient. In this note we consider sums of the form \[ S(x) = \sum_{\lambda\leq2x}\sum_{a_n\leq x}\sum_{p=a_n+\lambda} f(b_m) \text{ and } T(x) = \sum_{\lambda\leq x}\sum_{a_n\leq x}\sum_{p=a_n+\lambda} f(b_m), \] where $A = \{a_n\}$ and $B = \{b_m\}$ are given sequences of natural numbers and $f$ is a given nonnegative function defined on the natural numbers. In particular, if $B$ is the sequence of primes and $f\equiv1$, then $T(x) = (1 + o(1))A(x)\pi(x)$. This implies that if $A = \{n^k:n \geq1\}$, then $T(x) = (1 + o(1))x^{\frac1k}\pi(x)$. It follows that there exists a positive integer $\lambda\leq x^k$ such that $n^k+\lambda$, $n\leq x$, represents at least $(\frac1k + o(1))\pi(x)$ primes. \section{Results} \begin{thrm}\label{t1} Let $A=\{a_n\}$, $B=\{b_m\}$ be sequences of natural numbers, and let $f$ be a nonnegative function defined on the natural numbers. Let $A(x) = \sum_{a_n\leq x}1$, $B(x) = \sum_{b_m\leq x}f(b_m)$. Assume that $B(x) = (1 + o(1))x^\alpha\varphi(x)$, where $\varphi$ is monotonic and $\lim_{x\to\infty}\frac{\varphi(2x)}{\varphi(x)} = 1$. Let $S(x)$ denote the sum \[ S(x) = \sum_{\lambda\leq2x}\sum_{a_n\leq x}\sum_{b_m=a_n+\lambda} f(b_m) \] Then \[ (2^\alpha - 1 + o(1))A(x)B(x)\leq S(x)\leq (3^\alpha + o(1))A(x)B(x). \] \end{thrm} \begin{proof} For the lower bound, we start with Abel and Seibert's inequality \[ S(x) \geq [B(2x) - B(x)]A(x). \] Next, \[ \frac{B(2x) - B(x)}{B(x)} = \frac{(1 + o(1))(2x)^\alpha\varphi(2x)}{(1 + o(1))x^\alpha\varphi(x)} - 1 \to 2^\alpha - 1, \] hence $B(2x) - B(x) = (2^\alpha - 1 + o(1))B(x)$. For the upper bound, we write \begin{align*} S(x) &= \sum_{a_n\leq x}\sum_{a_n + 1\leq b_m \leq a_n + 2x} f(b_m) \\ &= \sum_{a_n\leq x}[B(a_n + 2x) - B(a_n)] \leq \sum_{a_n\leq x}B(a_n + 2x). \end{align*} We now estimate $B(a_n + 2x)$ from above. Let $a$ be an integer, $1\leq a\leq x$. Since $\varphi$ is monotonic, $x\leq a + x\leq 2x$, and $\frac{\varphi(x)}{\varphi(x)} = 1$, $\frac{\varphi(2x)}{\varphi(x)} \to1$, it follows that for every $\epsilon >0$ there exists $N = N(\epsilon)$ such that \[ \frac{\varphi(a + x)}{\varphi(x)} < 1 + \epsilon, ~~ x > N, ~ 1 \leq a \leq x. \] From this it follows that $\frac{\varphi(3x)}{\varphi(x)} = \frac{\varphi(3x)}{\varphi(2x)}\cdot\frac{\varphi(2x)}{\varphi(x)} \to 1$. Now since $2x\leq a + 2x \leq 3x$, $\varphi$ is monotonic, and $\frac{\varphi(2x)}{\varphi(x)}\to 1$, $\frac{\varphi(3x)}{\varphi(x)}\to 1$, it follows that for every $\epsilon > 0$ there exists $N = N(\epsilon)$ such that \[ \frac{\varphi(a + 2x)}{\varphi(x)} < 1 + \epsilon, ~~ x > N, ~ 1 \leq a \leq x. \] It now follows that for any $a = a(x)$, $1\leq a \leq x$, and any $\epsilon > 0$, \[ \frac{B(a + 2x)}{B(x)} = \frac{(1 + o(1))(a + 2x)^\alpha\varphi(a + 2x)} {(1 + o(1))x^\alpha\varphi(x)} < 3^\alpha + \epsilon \] for sufficiently large $x$. Hence, independent of the choice of $a$, $1\leq a\leq x$, \[ B(a + 2x) \leq (3^\alpha + o(1))B(x), \] and \[ S(x) \leq \sum_{a_n\leq x} B(a_n + 2x) \leq (3^a + o(1))A(x)B(x). \] \end{proof} Now we let $B$ be the sequence of primes. \begin{thrm}\label{t2} Let $A=\{a_n\}$ be a sequence of natural numbers. Then \[ S(x) = \sum_{\lambda\leq2x}\sum_{a_n\leq x}\sum_{p=a_n+\lambda}1 \geq (1 + o(1))A(x)\pi(x), \] where $p$ denotes a prime. Hence there exists $\lambda$, $1\leq\lambda\leq2x$, such that $a_n+\lambda$, $1\leq a_n\leq x$ represents at least $(\frac12+o(1)) \frac{A(x)}x\pi(x)$ primes.\end{thrm} \begin{proof} This proof is a direct application of the method of Abel and Siebert. We have \[ S(x) = \sum_{\lambda\leq2x}\sum_{a_n\leq x}\sum_{p=a_n+\lambda}1 \geq (\pi(2x) - \pi(x))A(x) = (1 + o(1))A(x)\pi(x), \] or \[ \frac1{2x}\sum_{\lambda=1}^{2x}\left(\sum_{a_n\leq x}\sum_{p=a_n+\lambda}1\right) \geq \left(\frac12 + o(1)\right)\frac{A(x)}x\pi(x), \] so at least one $\lambda$, $1\leq\lambda\leq 2x$, has the required property.\end{proof} We now improve this result by using part of the method of Theorem \ref{t1}. \begin{thrm}\label{t3} Let $A=\{a_n\}$ be a sequence of natural numbers. Then \[ T(x) = \sum_{\lambda\leq x}\sum_{a_n\leq x}\sum_{p=a_n+\lambda}1 = (1 + o(1))A(x)\pi(x), \] where $p$ denotes a prime. Hence there exists $\lambda$, $1\leq\lambda\leq x$, such that $a_n+\lambda$, $1\leq a_n\leq x$ represents at least $(1+o(1)) \frac{A(x)}x\pi(x)$ primes.\end{thrm} \begin{proof} As in the proof of Theorem \ref{t1}, we write \[ T(x) = \sum_{a_n\leq x} \sum_{a_n+1\leq p\leq a_n+x}1 = \sum_{a_n\leq x}[\pi(a_n + x) - \pi(a_n)]. \] It is not hard to show that for every $\epsilon > 0$ there exists $N = N(\epsilon)$ such that \[ 1 -\epsilon < \frac{\pi(a+x)-\pi(a)}{\pi(x)} < 1 + \epsilon, ~~x> N,~1\leq a\leq x. \] (For fixed $\epsilon$, divide $[1,x]$ into subintervals of length $\epsilon x$, and use the Prime Number Theorem to estimate $\frac{\pi(a+x)-\pi(a)}{\pi(x)}$ when $a\in [(i-1)\epsilon x, i\epsilon x]$.) Summing this over all $a_k$, $a_k\leq x$, gives \[ (1-\epsilon)A(x)\pi(x) < T(x) < (1+\epsilon)A(x)\pi(x),~~x>N, \] or $T(x) = (1+ o(1))A(x)\pi(x)$. The rest follows as in the proof of Theorem \ref{t2}. \end{proof} \begin{corl} Let $k\geq1$ be given. Then there exists a positive integer $\lambda \leq x^k$ such that $n^k+\lambda$, $n\leq x$, represents at least $(\frac1k+o(1))\pi(x)$ primes.\end{corl} \begin{proof} Setting $a_n=n^k$ in Theorem \ref{t3}, and replacing $x$ by $x^k$ in the conclusion of Theorem \ref{t3} shows that there exists $\lambda$, $1\leq\lambda \leq x^k$, such that $n^k+\lambda$, $1\leq n^k\leq x^k$, represents at least \[ (1 + o(1))\frac{(x^k)^{\frac1k}}{x^k}\pi(x^k) = (1 + o(1))\frac{x}{x^k} \frac{x^k}{\log x^k} = (1 + o(1))\frac{x}{k\log x} = \left(\frac1k + o(1)\right)\pi(x) \] primes.\end{proof} We now apply our methods to the case when $B$ is the sequence of square-free numbers. \begin{thrm}\label{t4} Let $A=\{a_n\}$ be a given sequence of natural numbers. Let $A(x) = \sum_{a_n\leq x}1$, and let $\alpha$ be any fixed real number with $\frac12 <\alpha<1$. Let $\epsilon>0$ be given. Then for all sufficiently large $x$, there exists $\lambda$, $1\leq\lambda\leq x^\alpha$, such that more than $(\frac6{\pi^2} - \epsilon)A(x)$ of the numbers $a_n+\lambda$, $a_n\leq x$, are square-free.\end{thrm} \begin{proof} Let $B=\{b_m\}$ be the sequence of square-free numbers, and let $B(x) = \sum_{b_m\leq x}1$. It is known (see \cite{hua1982}) that \[ B(x) = \frac{6x}{\pi^2} + O(\sqrt{x}). \] Let $\alpha$ be fixed, $1/2 < \alpha < 1$, and let $L$ denote the number $L = [x^\alpha]$. Let $\epsilon>0$ be given. Then \begin{align*} \sum_{\lambda=1}^L \sum_{a_n\leq x}\sum_{b_m=a_n+\lambda} 1 &= \sum_{a_n\leq x}\sum_{\lambda\leq L}\sum_{b_m=a_n+\lambda} 1 \\ &= \sum_{a_n\leq x}\sum_{a_n+1\leq b_m\leq a_n+L}1 \\ &= \sum_{a_n\leq x} (B(a_n + L) - B(a_n)) \\ &= \sum_{a_n\leq x}\left(\frac{6L}{\pi^2} + O(\sqrt{x+L})\right) \\ &= \sum_{a_n\leq x}\frac{6L}{\pi^2}(1 + o(1)) \\ &> \left(\frac6{\pi^2} - \epsilon\right)L \sum_{a_n\leq x}1 \\ &= \left(\frac6{\pi^2} - \epsilon\right)LA(x) \end{align*} holds for sufficiently large $x$. Hence there exists at least one $\lambda$, $1\leq\lambda\leq L = [x^\alpha]$, for which \[ \sum_{a_n\leq x}\sum_{b_m = a_n+\lambda}1 > \left(\frac6{\pi^2} - \epsilon\right)A(x), \] which was to be proved.\end{proof} \begin{ackn} The authors wish to express their sincere thanks to the referee for very helpful comments and suggestions that led to a considerable improvement of this paper. \end{ackn} \bibliographystyle{amsplain} \bibliography{tom-all} \end{document}