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Abstract

For each positive integer n, let the set of all 2-colorings of the interval [1;n] = f 1;2; : : : ;ng be given

the uniform probability distribution, that is, each of the 2n colorings is assigned probability 2� n. Let f

be any function such that f (k)= logk ! ¥ as k ! ¥ . For convenience we assume that f (k)2k is always

a positive integer. We show that the probability that a random 2-coloring of [1; f (k)2k] produces a

monochromatic k-term arithmetic progression tends to 1 as k ! ¥ . We call f (k)2k a pseudo upper

bound for the van der Waerden function. We also prove the “density version” of this result.

1 Introduction

Let w denote the van der Waerden function. By definition, for each integer k � 1, w(k) is the small-
est positive integer such that every 2-coloring of the interval [1;w(k)] = f 1;2; : : : ;w(k)g produces a
monochromatic k-term arithmetic progression. (Equivalently, for every partition of [1;w(k)] into at most
two parts, at least one part contains a k-term arithmetic progression.)

The existence of w(k), k � 1, was proved by van der Waerden in 1927 [7]. The best known lower
bound for w(k) is w(k) > (2k=2ek)(1 + o(1



To illustrate the method, consider 2-colorings of the interval [1; tk], where t = k2k, and let Tk denote
the set of all those 2-colorings of [1; tk] for which none of the t intervals [1;k], [k + 1;2k], . . . , [(t � 1)k +

1; tk] is monochromatic. Then



under the correspondence x0x1 � � � xs� 1 $ å
s� 1
i= 1 xiki. That is, we identify each integer in [0;ks � 1] with

the s-tuple of the digits in its k-ary expansion.
Under this identification, B1 may be visualized as the s-dimensional cube C, k units on a side. For

our purposes, we say that a line in the cube C is a set of the form

f x0 � � � x j� 1yx j+ 1 � � � xs� 1 : 0 � y � k � 1g;

where the xi’s are fixed. If the jth coordinate is the “moving” coordinate, then the k points in this line
correspond to k integers in B1 which form an arithmetic progression with common difference k j.

There are sks� 1 lines in the cube C. For each line u in C, let Ai denote the set of 2-colorings of C for
which the line u is monochromatic. Then jAuj = 2 � 2ks� k. Given any two distinct lines u and v, u and v

are either disjoint or meet in 1 point. In either case, jAu \ Avj = 4 �



(To see this it is convenient to show first that for any h > 0, the inequalities
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hold for all sufficiently large k. For the right-hand inequality, one again needs to assume that f (k) < k2,
and handle the case f (k) > k2 by a separate argument, as in the discussion in the Introduction.)

The cube C is defined as before. Let B denote a random ejCj-element subset of C, where each element
of C belongs to B with probability e. Let pu = Pr[u � B] = ek, where u is any one of the sks� 1 lines in
C, and let puv = Pr[u � B and v � B], where u and v are distinct lines in C. Then Pr[u � B for some u] �

å u pu � å u ; v puv.
Through each of the ks points of C there are s lines, and hence of the
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The remaining inequalities hold for sufficiently large k.
Since (s=k)ksek � ek < 1=2, we get
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Perhaps, by using a sufficiently large set of progressions, one could show that (1 + a )k is a pseudo
upper bound for the van der Waerden function, for every a > 0.
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