A Pseudo Upper Bound for the van der Waerden Function *

Tom C. Brown[†]

Citation data: T.C. Brown, *A pseudo upper bound for the van der Waerden function*, J. Combin. Theory Ser. A **87** (1999), 233–238.

Abstract

For each positive integer n, let the set of all 2-colorings of the interval $[1, n] = f 1, 2, \ldots, ng$ be given the uniform probability distribution, that is, each of the 2^n colorings is assigned probability 2^{-n} . Let f be any function such that $f(k)/\log k! = 4$ as k! = 4. For convenience we assume that $f(k)/(2^k)$ is always a positive integer. We show that the probability that a random 2-coloring of $[1, f(k)/(2^k)]$ produces a monochromatic k-term arithmetic progression tends to 1 as k! = 4. We call $f(k)/(2^k)$ a pseudo upper bound for the van der Waerden function. We also prove the "density version" of this result.

1 Introduction

Let w denote the van der Waerden function. By definition, for each integer k 1, w(k) is the smallest positive integer such that every 2-coloring of the interval [1; w(k)] = f 1; 2; ...; w(k)g produces a monochromatic k-term arithmetic progression. (Equivalently, for every partition of [1; w(k)] into at most two parts, at least one part contains a k-term arithmetic progression.)

The existence of w(k), k=1, was proved by van der Waerden in 1927 [7]. The best known lower bound for w(k) is $w(k) > (2^k=2ek)(1+o(1=-\text{term arih }3.896\text{ f }4.982\text{ 0 Td }[(]\text{TJ })\text{ITd }[1002/\text{F8 }9.962\text{p26 Tf }4.981\text{ 0 Td }[(e^{-k+1})^2]$

To illustrate the method, consider 2-colorings of the interval [1;tk], where $t=k2^k$, and let T_k denote the set of all those 2-colorings of [1;tk] for which none of the t intervals [1;k], [k+1;2k], ..., [(t-1)k+1;tk] is monochromatic. Then

under the correspondence $x_0x_1 = x_{s-1}$ \$ å $_{i=1}^{s-1}x_ik^i$. That is, we identify each integer in [0; k^s 1] with the *s*-tuple of the digits in its *k*-ary expansion.

Under this identification, B_1 may be visualized as the s-dimensional cube C, k units on a side. For our purposes, we say that a *line* in the cube C is a set of the form

$$f x_0 x_{j-1} y x_{j+1} x_{s-1} : 0 y k 1g;$$

where the x_i 's are fixed. If the *j*th coordinate is the "moving" coordinate, then the *k* points in this line correspond to *k* integers in B_1 which form an arithmetic progression with common difference k^j .

There are sk^{s-1} lines in the cube C. For each line u in C, let A_i denote the set of 2-colorings of C for which the line u is monochromatic. Then $jA_uj = 2 \ 2^{k^s-k}$. Given any two distinct lines u and v, u and v are either disjoint or meet in 1 point. In either case, $jA_u \setminus A_vj = 4$

(To see this it is convenient to show first that for any h > 0, the inequalities

$$\frac{1}{2}\log(1=e)$$
 h $\frac{1}{\log k} < \frac{s}{k} < \frac{1}{2}\log(1=e) + h$ $\frac{1}{\log k}$

hold for all sufficiently large k. For the right-hand inequality, one again needs to assume that $f(k) < k^2$, and handle the case $f(k) > k^2$ by a separate argument, as in the discussion in the Introduction.)

The cube C is defined as before. Let \mathbf{B} denote a random ejCj-element subset of C, where each element of C belongs to \mathbf{B} with probability e. Let $p_u = \Pr[u \ \mathbf{B}] = e^k$, where u is any one of the sk^{s-1} lines in C, and let $p_{uv} = \Pr[u \ \mathbf{B}]$ and $v \ \mathbf{B}$, where u and v are distinct lines in C. Then $\Pr[u \ \mathbf{B}]$ for some u] $\mathring{a}_{uv} p_u = \mathring{a}_{uv} p_{uv}$.

Through each of the k^s points of C there are s lines, and hence of the s^{sk^s-1} pairs of lines f(u, vg) exactly $k^s \frac{s}{2}$ pairs meet, and the other pairs are disjoint. Then

The remaining inequalities hold for sufficiently large *k*.

Since $(s=k)k^se^k$ $e^k < 1=2$, we get

$$\mathring{a}_{u} P_{u} \quad \mathring{a}_{u,v} P_{u,v} > \frac{3}{4} \frac{s}{k} k^{s} e^{k} \quad k^{s} \quad \frac{s}{2} \quad e^{2k} \quad 1 (1 \quad \text{s=}k) k^{s} e^{k} \quad k^{s}$$

Perhaps, by using a sufficiently large set of progressions, one could show that $(1 + a)^k$ is a pseudo upper bound for the van der Waerden function, for every a > 0.

References

- [1] N. Alon and A. Zaks, *Progressions in sequences of nearly consecutive integers*, J. Combin. Theory Ser. A **84** (1998), 99–109.
- [2] E.R. Berlekamp, *A construction for partitions which avoid long arithmetic progressions*, Canad. Math. Bull. **11** (1968), 409–414.
- [3] T.C. Brown and D.R. Hare, *Arithmetic progressions in sequences with bounded gaps*, J. Combin. Theory Ser. A **77** (1997), 222–227.
- [4] Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer, *Ramsey theory*, 2nd ed., Wiley-Interscience Series in Discrete Mathematics and Optimization. A Wiley-Interscience Publication., John Wiley & Sons, Inc., New York, 1990.
- [5] M.B. Nathanson, *Arithmetic progressions contained in sequences with bounded gaps*, Canad. Math. Bull. **23** (1980), 491–493.
- [6] Saharon Shelah, *Primitive recursive bounds for van der Waerden numbers*, J. Amer. Math. Soc. **1** (1988), 635–636.
- [7] B.L. van der Waerden, *Beweis einer baudetschen vermutung*, Nieuw Arch. Wisk. **15** (1927), 212–216.