%%%% THIS FILE IS AUTOMATICALLY GENERATED %%%% DO NOT EDIT THIS FILE DIRECTLY, %%%% ONLY EDIT THE SOURCE, tom-10/document.tex. %%%% %% Standard package list \documentclass[letterpaper]{article} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[english]{babel} \usepackage[top=3cm, bottom=3cm, left=3.5cm, right=3.5cm]{geometry} \usepackage[onehalfspacing]{setspace} \usepackage{amsmath,amssymb,amsthm,wasysym} \usepackage{nicefrac,booktabs} \usepackage{mathptmx} \usepackage{cite} \usepackage[colorlinks=true]{hyperref} %% Various helpers for Tom's papers \newcommand{\gs}{\textnormal{gs}} \newcommand{\ord}{\textnormal{ord}} \newcommand{\Exp}{\textnormal{Exp}} \newcommand{\Log}{\textnormal{Log}} \newcommand{\lcm}{\textnormal{lcm}} \newcommand{\range}{\textnormal{range}} \newcommand{\NR}{\textnormal{NR}} \newcommand{\Mod}[1]{\left(\textnormal{mod}~#1\right)} \newcommand{\ap}[2]{\left\langle #1;#2 \right\rangle} \newcommand{\summ}[1]{\sum_{k=1}^m{#1}} \newcommand{\bt}[1]{{{#1}\mathbb{N}}} \newcommand{\fp}[1]{{\left\lbrace{#1}\right\rbrace}} \newcommand{\intv}[1]{{\left[1,{#1}\right]}} %% Lifted from http://stackoverflow.com/questions/2767389/referencing-a-theorem-like-environment-by-its-name %% This lets me do things like "Theorem A" and have the references work properly. \makeatletter \let\@old@begintheorem=\@begintheorem \def\@begintheorem#1#2[#3]{% \gdef\@thm@name{#3}% \@old@begintheorem{#1}{#2}[#3]% } \def\namedthmlabel#1{\begingroup \edef\@currentlabel{\@thm@name}% \label{#1}\endgroup } \makeatother % end lift \newtheoremstyle{namedthrm} {}{}{}{}{}{}{ } % This last space needs to be there {\bf\thmname{#1} \thmnote{#3}.} %% End reference hack %% Document start \date{} \begin{document} %% Content start \newtheorem{thm}{Theorem}[section] \newtheorem{lem}[thm]{Lemma} \newtheorem{cor}[thm]{Corollary} \newtheorem{prop}[thm]{Proposition} \newtheorem{alg}[thm]{Algorithm} \newtheorem{ex}[thm]{Example} \numberwithin{equation}{section} \title{On the partition function of a finite set \footnote{Most of the work for this paper was done during a stay at the Institute of Mathematics, Academia Sinica, Taipei, Taiwan.}} \author {T. C. Brown \\ Department of Mathematics\\ ¶¡ÏãÔ°AV\\ Burnaby, BC\\ Canada V5A 1S6\\ email: \texttt{tbrown@sfu.ca}\\ \and Wun-Seng Chou\\ Institute of Mathematics\\ Academia Sinica\\ Nankang, Taipei 11529, ROC\\ email: \texttt{macws@ccvax.sinica.edu.tw}\\ and\\ Peter J-S Shiue\footnote{The auther thanks the Institute of Mathematics, Academia Sinica, Taipei, Taiwan for support and a pleasant stay.}\\ Department of Mathematical Sicences\\ University of Nevada at Las Vegas\\ Las Vegas, Nevada 89154-4020, USA\\ email: \texttt{shiue@nevada.edu}} \maketitle \begin{center}{\small {\bf Citation data:} Tom~C. Brown, Wun-Seng Chou, and Peter J.-S. Shiue, \emph{On the partition function of a finite set}, Australas. J. Combin. \textbf{27} (2003), 193--204.}\bigskip\end{center} \newcommand{\partn}[1]{\ensuremath{p_{_A}({#1})}} \begin{abstract} Let $A = \{ a_1, a_2, \ldots, a_k\}$ be a set of $k$ relatively prime positive integers. Let $\partn{n}$ denote the partition function of $n$ with parts in $A$, that is, $p_{_A}$ is the number of partitions of $n$ with parts belonging to $A$. We survey some known results on $\partn{n}$ for general $k$, and then concentrate on the cases $k = 2$ (where the exact value of $\partn{n}$ is known for all $n$), and the more interesting case $k = 3$. We also describe an approach using the cycle indicator formula. Let $A = \{ a, b, c \}$, where $a$, $b$, $c$ are pairwise relatively prime. It has long been known (Ehrhart, J. Reine Angew. Math. 226 (1967), 1–29) that the problem of finding the value of $\partn{n}$ reduces to the problem of finding the value of $\partn{r}$, where $0 \leq r < abc$. Sert\"oz and \"Ozl\"uk (Istanbul Tek. \"Univ. B\"ul. 39 (1986), 41–51) have handled the case $abc - a - b - c < r < abc$. Our main contribution is a recursive method for computing the value of $\partn{r}$ in the case $r \leq abc - a - b -c$. \end{abstract} \section{Introduction\label{s1}} Let $n$ be a positive integer. A \emph{partition} of $n$ is a representation of $n$ as a sum of positive integers. The order of the terms of this sum does not matter. The \emph{partition function}, denoted by $p(n)$, counts the number of partitions of $n$. For example, $p(4) = 5$, since $4$ has exactly $5$ partitions: $1 + 1 + 1 + 1$, $1 + 1 + 2$, $1 + 3$, $2 + 2$, and $4$. Now, let $A = \{a_1, a_2,\dots, a_k\}$ be a set of $k$ relatively prime positive integers. A \emph{partition of $n$ with parts in $A$} is a representation of $n$ as a sum of not necessarily distinct elements of $A$. Again, the order of the terms of this sum does not matter. The \emph{partition function} in this situation, denoted by $\partn{n}$, counts the number of partitions of $n$ with parts in $A$, see Stanley \cite{stanley1986}. Obviously, $\partn{n}$ is the number of non-negative integer solutions $(x_1, x_2,\dots, x_k)$ of the equation \[ a_1x_1 + a_2x_2 + \cdots + a_kx_k = n. \] as mentioned by Comtet \cite{comtet1974}. It is well known that for all sufficient large $n$ the equation has a solution. Trivially, if $A = \{1, 2,\dots, n\}$, then $p_{_A}(n) = p(n)$ (see \cite{niven+zuckerman+montgomery1991}). The famous problem of Frobenius is to find the largest natural number $g$ such that $\partn{g} = 0$, that is, the largest natural number $g$ which cannot be expressed in the form $a_1x_1 + a_2x_2 + \dots + a_kx_k$, where the $x_i$ are non-negative integers. The Frobenius problem has a long history (See, for example, \cite{guy1994,roberts1956}). Sylvester \cite{sylvester1882} completely solved the problem for $k = 2$ in 1882, and Glaisher \cite{glaisher1909} simplified the proof in 1909: When $A = \{a_1, a_2\}$ and $a_1$, $a_2$ are relatively prime, then every $n \geq (a_1 - 1)(a_2 - 1)$ can be expressed in the form $n = a_1x + a_2y$, where $x$, and $y$ are non-negative integers, and $a_1a_2 - a_1 - a_2$ cannot be so expressed. Thus the number $g$ in this case is $g = a_1a_2 - a_1 - a_2$. When $k = 3$, no closed-form expression for $g$ is known, except in some special cases, although there do exist explicit algorithms for calculating it. See for example \cite{chen1984,davison1994,greenberg1988,hujter+visvari1987,kan+stechkin+sharkov1997,rodseth1978,selmer1977}. It seems very difficult to calculate $g$ when $k \geq 4$ (however, see \cite{sertoz+ozluk1986}). In the general case, various upper bounds are known (for instance, see \cite{chen1956}), and closed-form expressions are known in a few special cases, for example in the case that $a_1, a_2, \cdots, a_k$ is an arithmetic progression (See \cite{roberts1956}). In fact, it has been long conjectured that the Frobenius problem is NP-hard, and this is proved by Ramirez-Alfonsin \cite{ramirez-alfonsin1996}. This paper is devoted to th study of $\partn{n}$ when $k = 2$ and $3$. Our main contribution is a recursive method for computing the value $\partn{n}$ when $n \leq a_1a_2a_3 - a_1 - a_2 - a_3$ where $a_1,a_2,a_3$ ar pairwise relatively prime integers. We also provide a short proof of a known result when $k = 2$ (see Theorem \ref{t41}). Our proof yields a complete explicit formula for $\partn{n}$ in the case $k = 2$ (see Corollary \ref{c43}). In Sections \ref{s2} and \ref{s3}, we survey some known results on $\partn{n}$ for general $k$. In Section \ref{s4}, we forucs our attention on the cases $k=2$ and $k=3$ (see \cite{ehrhart1967-1,ehrhart1967-2} for some results concerning the case $k=4$). Section \ref{s5} describes an approach using the cycle indicator formula. \section{Asymptotic formula for $\partn{n}$ and $p(n)$\label{s2}} If $A = \{a_1, a_2,\dots, a_k\}$ is a set of $k$ relatively prime positive integers, it is known that \[ \partn{n} \sim \frac{n^{k-1}}{a_1a_2\cdots a_k(k - 1)!} \] (see \cite[pp. 134, Problem 15C]{vanlint+wilson1992}). A proof of this result appears in \cite{polya+szego1978}, Problem $27$. The proof there is based on the generating function of $\partn{n}$. Elementary proofs are given in \cite{nathanson2000,sertoz+ozluk1991,wright1961}. For the case $A = \{1, 2, \cdots, k\}$, an elementary proof of this formula was given by Erd\H{o}s \cite{erdos1942}. For the unrestricted partition function $p(n)$, Rademacher \cite{rademacher1937} (see also \cite{apostol1976}) gives an asymptotic formula as \[ p(n) \sim \frac{\exp(\pi(2/3)^{1/2}n^{1/2})}{4\sqrt{3}n}, \] a result which was proved earlier by Hardy and Ramanujan \cite{hardy+ramanujan1918}. Erd\H{o}s \cite{erdos1942} gave an elementary proof of the relation \[ p(n) \sim \frac{a\cdot\exp(\pi(2/3)^{1/2}n^{1/2})}{n}, \] but was unable to show that $a = \frac{1}{4\sqrt{3}}$. Kr\"atzel \cite{kratzel1970} proved the bound $p(n) \leq 5^{n/4}$, with equality only when $n = 4$. \section{Recurrence relation for $\partn{n}$ and $p(n)$\label{s3}} Apostol \cite{apostol1976} (see also \cite{andrews1976}) shows by analytical methods that \[ n\partn{n} = \sum_{k=1}^n\sigma_{_A}(k)\partn{n - k}, \] where $\sigma_{_A}(n)$ denotes the sum of those divisors of $n$ which belong to $A$. This result generalizes a result of Euler, who proves this identity for the case $A = \{1, 2, \dots, k\}$. This result holds for an arbitrary set $A$ of positive integers, not necessarily finite. Hence when $A$ is the set of all positive integers, this becomes \[ np(n) = \sum_{k=1}^np(n - k)\sigma(k). \] Bell \cite{bell1943} shows that if $A = \{a_1, a_2, \dots, a_k\}$ and $a$ is the least common multiple of $\{a_1, a_2, \dots, a_k\}$, then \[ \partn{an + b} = c_0 + c_1n + c_2n^2 + \cdots + c_{k-1}n^{k-1}, \] where $c_0, c_1, c_2, \dots, c_k$ are constants independent of $n$ and $b$, $0 \leq b < a$. (See also \cite{raczunas+chrzpolhkastowski-watchtel1993,wright1961}.) The constants are fully determined if $\partn{an + b}$ is known for $k$ different values of $n$. This can be done using Lagrange's interpolation formula. For example, if $A = \{a_1, a_2, a_3\}$, then \begin{align*} 2\partn{an + b} &= (n - 2)(n - 3)p_{_A}(a + b) - 2(n - 1)(n - 3)\partn{2a + b} \\ &\qquad + (n - 1)(n - 2)\partn{3a + b}. \end{align*} This formula does not however provide an effective way to calculate $\partn{n}$. Later, Kuriki \cite{kuriki1978} proves a somewhat different recursion formula for $\partn{n}$. Although there are a number of algorithms for finding the largest number not representable in the form $a_1x_1 + a_2x_2 + \cdots + a_kx_k$ (see for example \cite{greenberg1980,lewin1975,sertoz+ozluk1986}), it would be of interest to find a fast algorithm for calculating $\partn{n}$. \section{Cases $|A| = 2$ and $|A| = 3$\label{s3}} In the first part of this section, we consider the case $|A| = 2$. It is quite well known that $\partn{n} = \left[\frac{n}{ab}\right]$ or $\left[\frac{n}{ab}\right] + 1$ (see \cite{niven+zuckerman+montgomery1991}). However, one unified formulae has been obtained as stated in the following theorem. This theorem is proved independently by Sert\"oz in 1998 \cite{sertoz1998}, Tripathi in 2000 \cite{tripathi2000} and Beck and Robins \cite{beck+robins}. Their proofs involve generating functions. There is also a simple direct proof, which we give below. We then give a simple algorithm for calculating $\partn{n}$ based on the proof of this theorem. \begin{thm}\label{t41} Let $A = \{a, b\}$ with $(a, b) = 1$. Define $a'(n)$ and $b'(n)$ by $a'(n)a \equiv -n \mod b$, with $1 \leq a'(n) \leq b$ and $b'(n)b \equiv -n \mod a$ with $1 \leq b'(n) \leq a$, respectively. Then for all $n \geq 1$, \[ \partn{n} = \frac{n + aa'(n) + bb'(n)}{ab} - 1. \] \end{thm} \begin{proof}It is well known (see for example Brown and Shiue \cite{brown+shiue1993}) that for all $n \geq 0$, if $n = qab + r$ with $0 \leq r < ab$ then $\partn{n} = q + \partn{r}$, that for all $0 < n < ab$, $\partn{n} = 0$ or $1$, that $\partn{n} = 1$ for $ab - a - b < n < ab$, and that $\partn{n} = 0$ if $n = ab - a - b$. Therefore to prove the theorem we may assume that $0 < n < ab - a - b$. Note that $ab$ divides $aa'(n) + bb'(n) + n$, since each of $a$ and $b$ divides $aa'(n) + bb'(n) + n$. Also, $0 < aa'(n) + bb'(n) + n < 3ab$, so that either $aa'(n) + bb'(n) + n = ab$ or $aa'(n) + bb'(n) + n = 2ab$. Now we only need to show that \begin{enumerate} \item[(i)] $aa'(n) + bb'(n) + n = ab$ implies $p_{_A}(n) = 0$; \item[(ii)] $aa'(n) + bb'(n) + n = 2ab$ implies $p_{_A}(n) = 1$. \end{enumerate} If $aa'(n) + bb'(n) + n = ab$ and $as + bt = n$ for some $s, t \geq 0$, then $aa'(n) + bb'(n) + as + bt = ab$, or $a(a'(n) + s) + b(b'(n) + t) = ab$, so $a|(b'(n) + t)$ and $b|(a'(n) + s)$. Since $0 < b'(n) + t \leq a$ and $0 < a'(n) + s \leq b$, this gives $a = b'(n) + t$ and $b = a'(n) + s$, hence $2ab = ab$, a contradiction. This proves (i). To prove (ii), simply note that if $aa'(n) + bb'(n) + n = 2ab$, then $n = a(b - a'(n)) + b(a - b'(n))$. \end{proof} This theorem is easy to generalize to the case $(a, b) = d$ in the following corollary. We omit its trivial proof. \begin{cor}\label{c42} Let $A = \{a, b\}$ with $(a, b) = d$. If $d$ divides $n$, define $a'(n)$ and $b'(n)$ by $a'(n)\frac{a}{d} \equiv -\frac{n}{d} \mod \frac{b}{d}$ and $b'(n)\frac{b}{d} \equiv -\frac{n}{d} \mod \frac{a}{d}$, respectively, as those in Theorem \ref{t41}. Then for all $n \geq 1$, \[ \partn{n} = \left\{ \begin{array}{cl} 0 & \textnormal{if $d$ does not divide $n$} \\ \frac{n + aa'(n) + bb'}{\textnormal{lcm}\{a, b\}} - 1 & \textnormal{if $d$ divides $n$.} \end{array} \right. \] \end{cor} From the statement and the proof of Theorem \ref{t41}, if $(a, b) = 1$, we can compute $p_{_A}(n)$ in the following \begin{alg} \label{c43} Let $A = \{a, b\}$ with $(a, b) = 1$. Let $n = qab + r$ with $0 \leq r < ab$. If $ab - a - b < r < ab$, then $\partn{n} = q + 1$. If $r = ab - a - b$, then $\partn{n} = q$. For the remaining value of $r$, we have $\partn{n} = q$ if $aa'(r) + bb'(r) + r = ab$ and $\partn{n} = q + 1$ if $aa'(r) + bb'(r) + r = 2ab$. (Here $a'(r)$ and $b'(r)$ are defined as in the statement of the theorem.) \end{alg} We now give examples using this corollary. We do not write down all partitions and only compute the number $\partn{n}$ instead. \begin{ex} \label{e44} \cite{sertoz1998} Let $n = 123456789012345$ and $A = \{a,b\}$, where $a = 1234567$, $b = 12345678$. Write $q = 8$ and $r = 1524255800937$. Then we have $n = q\cdot ab + r$. Moreover, $a'(r) = 462963$ and $b'(r) = 1064806$. Hence, $aa'(r) + bb'(r) + r = 15241566651426 = ab$. By Corollary \ref{c43}, we have $\partn{n} = 8$.\end{ex} We now consider the case $|A| = 3$ in the remaining part of this section. The case is a little bit more complicated. First of all, we need the following lemma. In this lemma and afterwards, $u_v'(t)$ will denote the number $1 \leq u_v'(t) \leq v$ satisfying $uu_v'(t) \equiv -t \mod v$, whenever $u, v \geq 1$ and $t$ are integers satisfying $(u, v) = 1$. \begin{lem}\label{l45} Let $A = \{a, b, c\}$, where $a, b$, and $c$ are relatively prime positive integers. Write $d_3 = (a, b)$, $d_1 = (b, c)$, and $d_2 = (c, a)$. Then for any integer $n > 0$, the number $n' = n - (d_1 - a_{d_1}'(n))a - (d_2 - b_{d_2}'(n))b - (d_3 - c_{d_3}'(n))c$ is divisible by $d_1d_2d_3$. Moreover, $\partn{n} = p_{_{A'}}(\frac{n'}{d_1d_2d_3})$, where $A' = \{\frac{a}{d_2d_3}, \frac{b}{d_3d_1}, \frac{c}{d_1d_2}\}$ and where we use the convention that $p_{_{A'}}(0) = 1$ and $p_{_{A'}}(\frac{n'}{d_1d_2d_3}) = 0$ if $n' < 0$. \end{lem} \begin{proof} If $ax + by + cz = n$ with $x, y, z \geq 0$, then $d_3$ divides $n - cz = ax + by$. Since $d_3 - c_{d_3}'(n)$ is the smallest nonnegative integer $u$ such that $d_3$ divides $n - uc$, $z = d_3z' + (d_3 - c_{d_3}'(n))$ for some nonnegative integer $z'$. Similarly, $x = d_1x' + (d_1 - a_{d_1}'(n))$ and $y = d_2y' + (d_2 - b_{d_2}'(n))$ for some nonnegative integers $x'$ and $y'$, respectively. So, $ax + by + cz = n$ with $x, y, z \geq 0$ if and only if $a(x - (d_1 - a_{d_1}'(n))) + b(y - (d_2 - b_{d_2}'(n))) + c(z - (d_3 - c_{d_3}'(n))) = n'$ with $x - (d_1 - a_{d_1}'(n)), y - (d_2 - b_{d_2}'(n)), z - (d_3 - c_{d_3}') \geq 0$. This implies that $d_1d_2d_3$ divides $n'$. Moreover, \[ \frac{a(x - (d_1 - a_{d_1}'(n)))}{d_1d_2d_3} + \frac{b(y - (d_2 - b_{d_2}'(n)))}{d_1d_2d_3} + \frac{c(z - (d_3 - c_{d_3}'(n)))}{d_1d_2d_3} = \frac{n'}{d_1d_2d_3}. \] This implies $\partn{n} = p_{_{A'}}(\frac{n'}{d_1d_2d_3})$.\end{proof} From this lemma, it is enough to consider, afterwards, the set $A = \{a, b, c\}$ such that positive integers $a, b$, and $c$ are relatively prime in pairs, i.e., $(a, b) = (b, c) = (c, a) = 1$. The following two theorems are quite well-known. \begin{thm}[Ehrhart \cite{ehrhart1967-1}] \label{t46} Let $A = \{a, b, c\}$, where positive integers $a, b$, and $c$ are relatively prime in pairs. Let $n = q\cdot abc + r$ with $0 \leq r < abc$. Then \[ \partn{n} = \partn{r} + \frac{q(n + r + a + b + c)}{2}. \] In particular, \[ \partn{abc} = \frac{abc + a + b + c}{2} + 1. \] \end{thm} \begin{thm}[Sert\"oz and \"Ozl\"uk \cite{sertoz+ozluk1991}] \label{t47} Let $A = \{a, b, c\}$ where $a, b$, and $c$ are relatively prime in pairs. Let $n = q\cdot abc + r$ with $0 \leq r < abc$. Then, for $1 \leq x \leq a + b + c - 1$, \[ \partn{abc - x} = \frac{abc + a + b + c}{2} - x. \] In particular, \[ \partn{abc - a - b - c + 1} = \frac{abc - a - b - c}{2} + 1. \] \end{thm} It seems that it is not easy to find a ``simple'' closed form for computing $\partn{n}$ whenever $n \leq abc - a - b - c$. Here, we are going to give a method to compute such $\partn{n}$. For this purpose, we need the following \begin{prop} \label{p48} Let $A = \{ a,b,c\}$ where positive integers $a,b,c$ are pairwise relatively prime and let $n$ be a non-negative integer. Then \[ \partn{n} = \left\{ \begin{array}{cl} \partn{n - a - b - c} + q_{_A}(n) & \textnormal{if $n\geq a + b + c$} \\ q_{_A}(n) & \textnormal{if $1 \leq n < a + b + c$}\end{array}\right. \] where $q_{_A}(n) = p_{_{A\setminus\lbrace a\rbrace}}(n) + p_{_{A\setminus\lbrace b\rbrace}}(n) + p_{_{A\setminus\lbrace c\rbrace}}(n) - \epsilon_a(n) - \epsilon_b(n) - \epsilon_c(n)$ with \[ \epsilon_d(m) = \left\{\begin{array}{cl} 1&\textnormal{ if } d|m\\0&\textnormal{otherwise.}\end{array}\right. \] \end{prop} \begin{proof} Write $E_{\{a,b,c}\}(n) = \{(x,y,z) | x,y,z\geq 0 \text{ are integers, and } xa + yb + zc = n \}$. Let $(x_1,y_1,z_1)\in E_{\{a,b,c}\}(n)$. If $0 < n < a + b + c$ then $x_1y_1z_1 = 0$. Thus, $\partn{n - a - b - c} = |E_{\{a,b,c}\}(n) \setminus\{E_{\{a,b,0\}}(n)\cup E_{\{a,0,c}\}(n)\cup E_{\{0,b,c}\}(n)\}|$ and the result follows by the inclusion-exclusion formula.\end{proof} In the following corollary the values $\partn{abc - a - b - c}$ and $\partn{abc - a - b -c - 1}$ are obtained as particular cases of Proposition \ref{p48}. \begin{cor}\label{c49} Let $A = \{a,b,c\}$ where $a$, $b$ and $c$ are positive pairwise relatively prime integers. Then \[ \partn{abc - a - b - c} = \frac{abc -a -b -c}2 + 1. \] and \[ \partn{abc - a - b - c - 1} = \frac{abc -a -b -c}2 - 1. \] \end{cor} \begin{proof} From Proposition \ref{p48}, we have $\partn{abc - a - b - c} = \partn{abc} - p_{_{A\setminus\lbrace a\rbrace}}(abc) - p_{_{A\setminus\lbrace b\rbrace}}(abc) - p_{_{A\setminus\lbrace c\rbrace}}(abc) + \epsilon_a(abc) + \epsilon_b(abc) + \epsilon_c(abc)$. By Theorem \ref{t46}, we have that $\partn{abc} = \frac{abc + a + b + c}2 + 1$ and, by Corollary \ref{c43}, we obtain that $p_{_{A\setminus\lbrace a\rbrace}}(abc) = a + 1$, $p_{_{A\setminus\lbrace b\rbrace}}(abc) = b + 1$, and $p_{_{A\setminus\lbrace c\rbrace}}(abc) = c + 1$. Since $\epsilon_a(abc) = \epsilon_b(abc) = \epsilon_c(abc) = 1$ then $\partn{abc -a -b -c} = \frac{abc - a - b - c}2 + 1$. Now again, from Proposition \ref{p48}, we have $\partn{abc - a - b - c - 1} = \partn{abc - 1} - p_{_{A\setminus\lbrace a\rbrace}}(abc - 1) - p_{_{A\setminus\lbrace b\rbrace}}(abc - 1) - p_{_{A\setminus\lbrace c\rbrace}}(abc-1) + \epsilon_a(abc-1) + \epsilon_b(abc-1) + \epsilon_c(abc-1)$. By Theorem \ref{t47}, we have that $\partn{abc - 1} \frac{abc +a+b+c}2 - 1$ and, by Corollary \ref{c43}, we obtain that $p_{_{A\setminus\lbrace a\rbrace}}(abc-1) = p_{_{A\setminus\lbrace a\rbrace}}((a-1)bc+ (bc -1)) = a$ (similarly, $p_{_{A\setminus\lbrace b\rbrace}}(abc-1) = b$ and $p_{_{A\setminus\lbrace c\rbrace}}(abc-1) = c$). Since $\epsilon_a(abc - 1) = \epsilon_b(abc - 1) = \epsilon_c(abc - 1) = 0$ then $\partn{abc - a - b - c - 1} = \frac{abc - a -b -c}2 - 1$.\end{proof} Using Proposition \ref{p48}, we will give a method to compute $\partn{n}$ for $n \leq abc - a - b - c$ in the following theorem. For this purpose, we need the notation that for positive integers $u$ and $v$ with $(u,v) = 1$, write $v_u'(n)$ instead of $v'(n)$ as in Theorem \ref{t41}. \begin{thm}\label{t410} Let $A = \{a,b,c\}$ where positive integers $a$, $b$ and $c$ are pairwise relatively prime. Let $n$ be a positive integer and let $t$ be the largest integer such that $n - t(a + b + c) \geq 0$. Then, \begin{align*} \partn{n} &= \frac{2n(t+1)s_3 - t(t+1)s_3^2}{2abc} + \frac1a\sum_{i=0}^t(b_a'(n - is_3) + c_a'(n - is_3)) \\ &\qquad + \frac1b\sum_{i=0}^t(c_b'(n - is_3) + a_b'(n - is_3)) + \frac1c\sum_{i=0}^t(a_c'(n - is_3) + b_c'(n - is_3)) \\ &\qquad - 3(t+1) - \sum_{i=0}^t(\epsilon_a(n - is_3) + \epsilon_b(n - is_3) + \epsilon_c(n - is_3)) \end{align*} where $s_3 = a + b + c$ with $\epsilon_d(m)$ defined as in Proposition \ref{p48}. \end{thm} \begin{proof} By applying recursively Proposition \ref{p48}, we have that \[ \partn{n} = \sum_{i=0}^{t-1}q_{_A}(n - is_3) + \partn{n - ts_3} = \sum_{i=0}^t q_{_A}(n - is_3) \] where $q_{_A}(m)$ is defined as in Proposition \ref{p48}. Hence, \begin{align*} \sum_{i=0}^t q_{_A}(n - is_3) &= \sum_{i=0}^t(p_{_{A\setminus\lbrace a\rbrace}}(n - is_3) + p_{_{A\setminus\lbrace b\rbrace}}(n - is_3) + p_{_{A\setminus\lbrace c\rbrace}}(n - is_3)) \\ &\qquad - \sum_{i=0}^t (\epsilon_a(n - is_3) + \epsilon_b(n - is_3) + \epsilon_c(n - is_3)). \end{align*} The result follows by using Theorem \ref{t41}. \end{proof} We give the following example as an illustration of the theorem. \begin{ex}\label{e411} Consider $A = \{5,7,11\}$ and $n = 41$. Write $a = 5$, $b = 7$ and $c = 11$ for convenience. Then, $s_3 = a + b + c = 23$. Since $41 = 1\times23 + 18$, $t = 1$. It is easy to see that the first term in the theorem equals \[ \frac{2n(t+1)s_3 - t(t+1)s_3^2}{2abc} = \frac{1357}{385}. \] For positive integers $u$ and $v$ with $(a, b) = 1$, let $u_v^{-1}$ be the multiplicative inverse of $u$ modulo $v$. It easy to see that $a_b^{-1} = 3$, $a_c^{-1} = 9$, $b_a^{-1} = 3$, $b_c^{-1} = 8$, $c_a^{-1} = 1$, and $c_b^{-1} = 2$. Write $k = 18$. Then, $a_b'(k+is_3) \equiv -a_b^{-1}k - i(1 + a_b^{-1}c) \equiv 2 + i$ (mod 7) for $i = 0,1$. Also, $a_c'(k+is_3) \equiv 3 + 2i$ (mod 11), $b_a'(k+is_3) \equiv 1 + i$ (mod 5), $b_c'(k+is_3) \equiv 10 + 3i$ (mod 11), $c_a'(k+is_3) \equiv 2 + 2i$ (mod 5), and $c_b'(k+is_3) \equiv 6 + 3i$ (mod 7) for $i = 0,1$. So, $\frac1a\sum_{i=0^1}(b_a'(k + is_3) + c_a'(k + is_3) = \frac95$, $\frac1b\sum_{i=0^1}(a_b'(k + is_3) + c_b'(k + is_3) = \frac{13}7$, $\frac1c\sum_{i=0^1}(a_c'(k + is_3) + b_c'(k + is_3) = \frac{20}{11}$. Moreover, neither 18 nor 41 is divided by any one of 5, 7 and 11. Hence, $\epsilon_a(k + is_3) = \epsilon_b(k + is_3) = \epsilon_c(k + is_3) = 0$ for $i = 0,1$. Combining all results above together, we have \[ \partn{A}(41) = \frac{1357}{385} + \frac95 + \frac{13}7 + \frac{20}{11} - 3(1 + 1) - 0 = 3. \] Indeed, there are exactly 3 partitions of 41 with parts in $A$, namely \begin{align*} 41 &= 5 + 5 + 5 + 5 + 7 + 7 + 7 \\ &= 5 + 5 + 5 + 5 + 5 + 5 + 11 \\ &= 5 + 7 + 7 + 11 + 11. \end{align*} \end{ex} \section{The cycle indicator formula\label{s5}} The cycle indicator $C_n$ of the symmetric permutation group of $n$ letters is an effective tool in enumerative combinatorics, which may be written in the form (cf. \cite{riordan1980}) \[ C_n(t_1, t_2, \dots, t_n) = \sum\frac{n!}{k_1!k_2!\cdots k_n!}\left( \frac{t_1}{1} \right)^{k_1} \left( \frac{t_2}{2} \right)^{k_2} \cdots \left( \frac{t_n}{n} \right)^{k_n}, \] where $t_1, t_2, \dots, t_n$ are real numbers and the summation is over all non-negative integer solutions $k_1, k_2, \dots, k_n$ of the equation $k_1 + 2k_2 + \cdots + nk_n = n$. Let $\sigma(n) = \sum_{d|n}d$. Then Hsu and Shiue \cite{hsu+shiue2001} obtain \[ p(n) = \frac{1}{n!}C_n(\sigma(1), \sigma(2), \dots, \sigma(n)), \] where $p(n)$ is the unrestricted partition function from Section \ref{s1} above. From this, they obtain by purely combinatorial methods the previously mentioned recurrence relation \[ np(n) = \sum_{k=1}^{n}\sigma(k)p(n - k). \] The cycle indicator equality above can be generalized in the following way. Let $A$ be any given set of positive integers. ($A$ can be finite or infinite.) Define $\partn0 = 1$ and $\sigma_{_A}(n) = \sum_{d|n, d\in A}d$. Then Hsu and Shiue \cite{hsu+shiue2001} obtain \[ \partn{n} = \frac{1}{n!}C_n(\sigma_{_A}(1), \sigma_{_A}(2), \dots, \sigma_{_A}(n)), \] and consequently they deduce, again by purely combinatorial methods, \[ n\partn{n} = \sum_{k=1}^{n}\sigma_{_A}(k)p_{_A}(n - k). \] As a particular instance, let us take $H = \{2^0, 2^1, 2^2, \dots\}$, so that $b(n) = p_H(n)$ is the number of \emph{binary partitions} of $n$. Let $\beta(n) = \sum_{2^i|n}2^i$. Then the above equations become $b(n) = \frac{1}{n!}C_n(\beta(1), \beta(2), \dots, \beta(n))$ and $nb(n) = \sum_{k=1}^n\beta(k)b(n - k)$. \section*{Acknowledgment} The authors wish to express their sincere thanks to the referee for very helpful comments and suggestions that led to a considerable improvement of this paper. %\bibitem{As} %G. E. Andrews, The Theory of Partition, Encyclopedia of Mathematics and its Applications, Vol. 2. Addison-Wesley, Reading, Mass., %1976. %\bibitem{Al} %T. M. Apostol, Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, %1976. % %\bibitem{Bl} %E. T. Bell, {\it Interpolated denumerants and Lambert series}, Amer. J. Math. {\bf 65} (1943), 382-386. % %\bibitem{BS} %T. C. Brown and P. J.-S. Shiue, {\it A remark related to the Frobenius problem}, Fibonacci Quart. {\bf 31} (1993), 32-36. % %\bibitem{Cn1} %Z.-M. Chen, {\it A theorem on linear form with integral coefficient} (in Chinese), Sichuan Daxue Xuebao, {\bf } (1956), No. 1, 1-3. % %\bibitem{Cn2} %Z.-M. Chen, {\it An algorithm to find $M_3$} (in Chinese), J. Southwest Teachers College {\bf 3} (1984), 2-8. % %\bibitem{Ct} %L. Comtet, Advanced Combinatorics, The Art of Finite and Infinite Expansions, Revised and enlarged edition, D. Reidel, Dordrecht, %1974 % %\bibitem{Dn} %J. L. Davison, {\it On the linear Diophantine problem of Frobenius}, J. Number Theory {\bf 48} (1994), 353-363. % %\bibitem{Et1} %E. Ehrhart, {\it Sur un probl$\grave{e}$me de g$\acute{e}$om$\acute{e}$trie diophantienne lin$\acute{e}$aire. I. Poly$\grave{e}$dres %et r$\acute{e}$seaux} (French), J. Reine Angew. Math. {\bf 226} (1967), 1-29. % %\bibitem{Et2} %E. Ehrhart, {\it Sur un probl$\grave{e}$me de g$\acute{e}$om$\acute{e}$trie diophantienne lin$\acute{e}$aire. II. Syst$\grave{e}$mes %diophantiens lin$\acute{e}$aires} (French), J. Reine Angew. Math. {\bf 227} (1967), 25-49. % %\bibitem{Es} %P. Erd$\ddot{\mbox{o}}$s, {\it On an elementary proof of some asymptotic formulas in the theory of partition}, Ann. of Math. (2) %{\bf 43} (1942), 437-450. % %\bibitem{Gg} %H. Greenberg, {\it An algorithm for a linear Diophantine equation and a problem of Frobenius}, Numer. Math. {\bf 43} (1980), %349-352. % %\bibitem{Gg1} %H. Greenberg, {\it Solution to a linear Diophantine equation for nonnegative integers}, J. Algorithms {\bf 9} (1988), 343-353. % %\bibitem{Gr} %J. W. L. Glaisher, {\it Formulae for partitions into given elements, derived from Sylvester's theorem}, Quart. J. Math., vol. {\bf %40} (1909), 275-348. % %\bibitem{Gy} %R. K. Guy, Unsolved Problem in Number Theory, Second edition. Problem Books in Mathematics. Unsolved Problems in Intuitive %Mathematics, I, Springer-Verlag, New York, 1994. % %\bibitem{HR} %G. H. Hardy and S. Ramanujan, Proc. London Math. Soc. {\bf 17} (1918), 75-115. % %\bibitem{HS} %L. C. Hsu and P. J.-S. Shiue, {\it Cycle indicator and special polynomials}, Annals of Combinatorics, to appear. 2001 % %\bibitem{HV} %M. Hujter and B. Vizv$\acute{\mbox{a}}$ri, {\it The exact solutions to the Frobenius problem with three variables}, J. Ramanujan %Math. Soc. {\bf 2} (1987), 117-143. % %\bibitem{KSS} %I. D. Kan, B. S. Stechkin, and I. V. Sharkov, {\it On the Frobenius problem for three arguments} (Russian), Mat. Zametki {\bf 62} %(1997), 626-629; translation in Math. Notes {\bf 62} (1997), 521-523. % %\bibitem{Kl} %E. Kr$\ddot{\mbox{a}}$tzel, {\it Die maximale Ordnung der Anzahl der wesentlich verschiedenen abelschen Gruppen \$n\$-ter Ordnung} %(German), Quart. J. Math. Oxford Ser. (2) {\bf 21} (1970), 273-275. % %\bibitem{Ki} %S. Kuriki, {\it Sur une m$\acute{e}$thode de calcul du d$\acute{e}$num$\acute{e}$rant}, TRU Math. {\bf 14} (1978), 47-48. % %\bibitem{Ln} %M. Lewin, {\it An algorithm for a solution of a problem of Frobenius}, J. Reine Angew. Math. {\bf 276} (1975), 68-82. % %\bibitem{Nn} %M. B. Nathanson, {\it Partition with parts in a finite set}, Proc. Amer. Math. Soc. {\bf 128} (2000), 1269-1273. % %\bibitem{NZM} %I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to The Theory of Numbers, fifth ed., Wiley, New York, 1991. % %\bibitem{PS} %G. P$\acute{\mbox{o}}$lya and G. Szeg$\ddot{\mbox{o}}$, Problems and Theorems in Analysis. I. Series, Integral Calculus, Theory of %Functions. Translated from the German by D. Aeppli. Corrected printing of the revised translation of the fourth German edition. %Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 193. Springer-Verlag, Berlin-New %York, 1978. % %\bibitem{RC} %M. Raczunas and P. Chrzpolhkastowski-Wachtel, {\it A Diophantine problem of Frobenius in terms of the least common multiple}, %Selected papers in honor of Paul Erd$\ddot{\mbox{o}}$s on the occasion of his $80$th birthday (Keszthely, 1993), Discrete Math. {\bf %150} (1996), 347-357. % %\bibitem{Rr} %H. Rademacher, {\it On the partition function p(n)}, Proc. London Math. Soc. {\bf 43} (1937), 241-254. % %\bibitem{R-A} %J. L. Ramirez-Alfonsin, {\it Complexity of the Frobenius problem}, Combinatorica {\bf 16} (1996), 143-147. % %\bibitem{Rn} %J. Riordan, An Introduction to Combinatorial Analysis, reprint of the 1958 edition, Princeton University Press, Princeton, N.J., %1980. % %\bibitem{Rs} %J. B. Roberts, {\it Note on linear forms}, Proc. Amer. Math. Soc. {\bf 7} (1956), 465-469. % %\bibitem{Rh} %$\ddot{\mbox{O}}$. J. R$\ddot{\mbox{o}}$dseth, {\it On a linear diophantine problem of Frobenius}, J. reine angew. Math. {\bf 301} %(1978), 171-178. % %\bibitem{Sr} %E. S. Selmer, {\it On the linear Diophantione problem of Frobenius}, J. Reine Angew. Math. {\bf 293/294} (1977), 1-17. % %\bibitem{Sz} %S. Sert$\ddot{\mbox{o}}$z, {\it On the number of solutions of a Diophantine equation of Frobenius}, Discrete Math. Appl. {\bf 8} %(1998), 153-162. % %\bibitem{SO1} %S. Sert$\ddot{\mbox{o}}$z and A. E. $\ddot{\mbox{O}}$zl$\ddot{\mbox{u}}$k, {\it On a Diophantine problem of Frobenius}, Istanbul %Tek. $\ddot{\mbox{U}}$niv. B$\ddot{\mbox{u}}$l. {\bf 39} (1986), 41-51. % %\bibitem{SO2} %S. Sert$\ddot{\mbox{o}}$z and A. E. $\ddot{\mbox{O}}$zl$\ddot{\mbox{u}}$k, {\it On the number of representations of an integer by a %linear form}, Istanbul $\ddot{\mbox{U}}$niv. Fen Fak. Mat. Derg. {\bf 50} (1991), 67-77. % %\bibitem{Sr} %J. J. Sylvester, {\it Excursus on rational fractions and partitions}, Amer. J. Math., vol. {\bf 5} (1882), 119-136. % %\bibitem{Sy} %R. P. Stanley, Enumerative Combinatorics, Vol. 1, Wadsworth \& Brooks Co., Monterey, California, 1986. % %\bibitem{Ti} %A. Tripathi, {\it The number of solutionS to $ax + by = n$}, Fibonacci Quart. {\bf 38} (2000), 290-293. % %\bibitem{LW} %J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press, Cambridge, 1992 (p. 134, problem 15C). % %\bibitem{Wt} %E. M. Wright, {\it A simple proof of a known result in partitions}, Amer. Math. Monthly {\bf 68} (1961), 144-145. % \bibliographystyle{amsplain} \bibliography{tom-all} \end{document}