%%%% THIS FILE IS AUTOMATICALLY GENERATED %%%% DO NOT EDIT THIS FILE DIRECTLY, %%%% ONLY EDIT THE SOURCE, tom-1/document.tex. %%%% %% Standard package list \documentclass[letterpaper]{article} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[english]{babel} \usepackage[top=3cm, bottom=3cm, left=3.5cm, right=3.5cm]{geometry} \usepackage[onehalfspacing]{setspace} \usepackage{amsmath,amssymb,amsthm,wasysym} \usepackage{nicefrac,booktabs} \usepackage{mathptmx} \usepackage{cite} \usepackage[colorlinks=true]{hyperref} %% Various helpers for Tom's papers \newcommand{\gs}{\textnormal{gs}} \newcommand{\ord}{\textnormal{ord}} \newcommand{\Exp}{\textnormal{Exp}} \newcommand{\Log}{\textnormal{Log}} \newcommand{\lcm}{\textnormal{lcm}} \newcommand{\range}{\textnormal{range}} \newcommand{\NR}{\textnormal{NR}} \newcommand{\Mod}[1]{\left(\textnormal{mod}~#1\right)} \newcommand{\ap}[2]{\left\langle #1;#2 \right\rangle} \newcommand{\summ}[1]{\sum_{k=1}^m{#1}} \newcommand{\bt}[1]{{{#1}\mathbb{N}}} \newcommand{\fp}[1]{{\left\lbrace{#1}\right\rbrace}} \newcommand{\intv}[1]{{\left[1,{#1}\right]}} %% Lifted from http://stackoverflow.com/questions/2767389/referencing-a-theorem-like-environment-by-its-name %% This lets me do things like "Theorem A" and have the references work properly. \makeatletter \let\@old@begintheorem=\@begintheorem \def\@begintheorem#1#2[#3]{% \gdef\@thm@name{#3}% \@old@begintheorem{#1}{#2}[#3]% } \def\namedthmlabel#1{\begingroup \edef\@currentlabel{\@thm@name}% \label{#1}\endgroup } \makeatother % end lift \newtheoremstyle{namedthrm} {}{}{}{}{}{}{ } % This last space needs to be there {\bf\thmname{#1} \thmnote{#3}.} %% End reference hack %% Document start \date{} \begin{document} %% Content start \theoremstyle{plain}% default \newtheorem{thm}{Theorem}[section] \newtheorem{prop}[thm]{Proposition} \newtheorem*{cor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition}[section] \newtheorem{rem}{Remark}[section] \title{On abelian and additive complexity in infinite words} \author{Hayri Ardal, Tom Brown, Veselin Jungi\'{c}, Julian Sahasrabudhe\footnote{ \textit{Department of Mathematics,¶¡ÏãÔ°AV, Burnaby, BC, Canada, V5A 1S6. \texttt{hardal@sfu.ca}, \texttt{tbrown@sfu.ca}, \texttt{vjungic@sfu.ca}, \texttt{jds16@sfu.ca}}}} \maketitle \begin{center}{\small {\bf Citation data:} Hayri Ardal, Tom Brown, Veselin Jungi\'c, and Julian Sahasrabudhe, \emph{On abelian and additive complexity in infinite words}, INTEGERS - Elect. J. Combin. Number Theory \textbf{12} (2012), \#A21.}\bigskip\end{center} \begin{abstract} The study of the structure of infinite words having \textit{bounded abelian complexity} was initiated by G. Richomme, K. Saari, and L. Q. Zamboni \cite{richomme+saari+zamboni}. In this note we define \textit{bounded additive complexity} for infinite words over a finite subset of $\mathbb{Z}^m.$ We provide an alternative proof of one of the results of \cite{richomme+saari+zamboni}. \end{abstract} %Introduction \section{Introduction} Recently the study of infinite words with \textit{bounded abelian complexity} was initiated by G. Richomme, K. Saari, and L. Q. Zamboni \cite{richomme+saari+zamboni}. (See also \cite{cassaigne+richomme+saari+zamboni2011} and the references in \cite{cassaigne+richomme+saari+zamboni2011} and \cite{richomme+saari+zamboni}.) In particular, it is shown (in \cite{richomme+saari+zamboni}) that if $\omega$ is an infinite word with bounded abelian complexity, then $\omega$ has \textit{abelian $k$-factors} for all $k \ge 1.$ (All these terms are defined below.)\ In this note we define \textit{bounded additive complexity}, and we show in particular that if $\omega$ is an infinite word (whose alphabet is a finite subset $S$ of $\mathbb{Z}^m$ for some $m \ge 1$) with bounded additive complexity, then $\omega$ has \textit{additive $k$-factors} for all $k \ge 1.$ As we shall see, this provides an alternative proof of the just-mentioned result concerning abelian $k$-factors.\ We are motivated by the following question. In \cite{freedman,jaroslaw2008,halbeisen+hungerbuhler2000}, and \cite{pirillo+varricchio1994}, it is asked whether or not there exists an infinite word on a finite subset of $\mathbb{Z}$ in which there do not exist two adjacent factors with equal lengths and equal sums. (The \textit{sum} of the factor $x_1x_2\dots x_n$ is $x_1+x_2+\dots + x_n.$) This question remains open, although some partial results can be found in \cite{au+robertson+shallit2011,cassaigne+currie+schaeffer+shallit,freedman}. %Additive complexity \section{Additive complexity} \subsection{Infinite words on finite subsets of $\mathbb{Z}$} %Definition 2.1 \begin{defn} Let $\omega$ be an infinite word on a finite subset $S$ of $\mathbb{Z}$. For a factor $B=x_1x_2\dots x_n$ of $\omega$, $\sum B$ denotes the sum $x_1+x_2+\cdots +x_n.$ Let $$\phi_\omega(n) = \{ \sum B : \mbox{ $B$ is a factor of $\omega$ with length $n$}\}.$$ The function $|\phi_{\omega}|$ (where $|\phi_{\omega}|(n) = |\phi_{\omega}(n)|, n \ge 1)$ is called the \textit{additive complexity} of the word $\omega.$\ If $B_1B_2\cdots B_k$ is a factor of $\omega$ such that $|B_1| = |B_2|=\cdots = |B_k|$ and $\sum B_1=\sum B_2=\cdots=\sum B_k,$ we call $B_1B_2\cdots B_k$ an \textit{additive $k$-power}. We say that $\omega$ has \textit{bounded additive complexity} if any one (and hence all) of the three conditions in the following proposition (Proposition 2.1) hold.\end{defn} %Proposition 2.1 \begin{prop} Let $\omega$ be an infinite word on the alphabet $S$, where $S$ is a finite subset of $\mathbb{Z}$. Then the following three statements are equivalent.\ 1. There exists $M_1$ such that if $B_1B_2$ is a factor of $\omega$ with $|B_1| = |B_2|,$ then $|\sum B_1 - \sum B_2| \le M_1.$\ 2. There exists $M_2$ such that if $B_1,B_2$ are factors of $\omega$ (not necessarily adjacent) with $|B_1| = |B_2|,$ then $|\sum B_1 - \sum B_2| \le M_2.$\ 3. There exists $M_3$ such that $|\phi_{\omega}(n)| \le M_3$ for all $n \ge 1$. \end{prop} \begin{proof} We will show that $1\Leftrightarrow 2$ and $2\Leftrightarrow 3.$\ Clearly $2 \Rightarrow 1$. Now assume that $1$ holds, that is, if $B_1B_2$ is any factor of $\omega$ with $|B_1| = |B_2|,$ it is the case that $|\sum B_1 - \sum B_2| \le M_1.$ Now let $B_1$ and $B_2$ be factors of $\omega$ with $|B_1| = |B_2|,$ and assume that $B_1$ and $B_2$ are non-adjacent, with $B_1$ to the left of $B_2$. Thus, assume that $$B_1A_1A_2B_2$$ is a factor of $\omega$, where $$|A_1| = |A_2|\ or\ |A_1| = |A_2|+1.$$ Let $$C_1 = B_1A_1, C_2 = A_2B_2.$$ Then $$|C_1| = |C_2|\ or \ |C_1| = |C_2|+1.$$ Now $$\sum C_1 - \sum C_2 = (\sum B_1 + \sum A_1) - (\sum A_2 + \sum B_2),$$ or $$\sum B_1 -\sum B_2 = (\sum C_1 - \sum C_2) + (\sum A_2 - \sum A_1).$$ Therefore, since $A_1, A_2$ and $C_1, C_2$ are adjacent, we have $$ |\sum A_2 - \sum A_1| \le M_1+\max S, \ \ |\sum C_1 - \sum C_2|\le M_1+\max S,$$ and $$|\sum B_1 -\sum B_2| \le 2M_1 + 2\max S,$$ so that we can take $M_2 = 2M_1 + 2\max S.$ Thus $1 \Rightarrow 2.$\\ Next we show that $2\Rightarrow 3.$ Thus we assume there exists $M_2$ such that whenever $B_1,B_2$ are factors of $\omega$ (not necessarily adjacent) with $|B_1| = |B_2|,$ it is the case that $|\sum B_1 - \sum B_2| \le M_2.$\ Let $n$ be given, and let $\sum B_1 = \min \phi_\omega(n).$ Then for any $B_2$ with $|B_2| = n,$ we have $\sum B_2 = \sum B_1 + (\sum B_2 - \sum B_1).$ Therefore $\sum B_2 \le \sum B_1 + M_2.$ This means that $\phi_\omega(n) \subset [\sum B_1, \sum B_1 + M_2],$ so that $|\phi_{\omega}(n)| \le M_2 + 1.$\\ Finally, we show that $3\Rightarrow 2.$ We assume there exists $M_3$ such that $|\phi_{\omega}(n)| \le M_3$ for all $n \ge 1$. Suppose that $B_1$ and $B_2$ are factors of $\omega$ such that $|B_1|=|B_2|= n$ and $\sum B_1 = \min \phi_{\omega}(n)$, $\sum B_2=\max \phi_{\omega}(n).$ To simplify the notation, for all $a \le b$ let $\omega[a,b]$ denote $x_ax_{a+1}\dots x_b$, and let us assume that $B_1 = \omega[1, n], B_2 = \omega[q+1, q+n],$ where $q>1.$ \ For each $i, 0 \le i \le q,$ let $b_i$ denote the factor $\omega[i+1, i+n].$ Thus $B_1 = b_0, B_2 = b_{q},$ and the factor $b_{i+1}$ is obtained by shifting $b_i$ one position to the right. Clearly $$\sum b_{i+1} - \sum b_i \le \max S - \min S.$$\ Since $|b_0|= |b_1|= \cdots = |b_{q}| = n,$ and $|\phi_{\omega}(n)| \le M_3,$ there can be at most $M_3$ distinct numbers in the sequence $\sum B_1 = \sum b_0, \sum b_1, \dots, \sum b_{q}=\sum B_2.$ Let these numbers be $$\sum B_1=c_1 < c_2 < \cdots < c_r = \sum B_2,$$ where $r \le M_3.$\ Since $\sum b_{i+1} - \sum b_i \le \max S - \min S, \ 0 \le i \le q,$ it follows that $c_{j+1} - c_j \le \max S - \min S ,\ 0 \le i \le r-1,$ and hence that $$|\sum B_1 - \sum B_2| \le (M_3-1)(\max S - \min S).$$ \end{proof} %Theorem 2.2 \begin{thm} Let $\omega$ be an infinite word on a finite subset of $\mathbb{Z}$. Assume that $\omega$ has bounded additive complexity. Then $\omega $ contains an additive $k$-power for every positive integer $k$. \end{thm} %proof of theorem 2.2 \begin{proof} Let $\omega = x_1x_2x_3 \cdots$ be an infinite word on the finite subset $S$ of $\mathbb{Z}$, and assume that whenever $B_1,B_2$ are factors of $\omega$ (not necessarily adjacent) with $|B_1| = |B_2|,$ then $|\sum B_1 - \sum B_2| \le M_2.$\ (This is from part 2 of Proposition 2.1.) Define the function $f$ from $\mathbb{N}$ to $\{0, 1, 2, \dots, M_2\}$ by $$f(n)=x_1 + x_2 + x_3 + \cdots + x_n \ \pmod{M_2 + 1}, \ \ n \ge 1 .$$\ This is a finite coloring of $\mathbb{N}$; by van der Waerden's theorem, for any $k$ there are $t,s$ such that $$f(t)=f(t+s)=f(t+2s)=\cdots f(t+ks).$$ Setting $$ B_i= \omega[t+(i-1)s+1, t+is], \ \ 1 \le i \le k,$$ we have $$\sum B_1 \equiv \sum B_2 \equiv \cdots \equiv \sum B_k \pmod{M_2 + 1}.$$ \ Since $B_1B_2\cdots B_k$ is a factor of $\omega$ with $|B_i| = |B_j|, 1 \le i