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Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the pathogen that causes

the disease COVID-19, produces replicase polyproteins 1a and 1ab that contain, respectively,

11 or 16 nonstructural proteins (nsp). Nsp5 is the main protease (Mpro) responsible for

cleavage at eleven positions along these polyproteins, including at its own N- and C-terminal

boundaries, representing essential processing events for subsequent viral assembly and

maturation. We have determined X-ray crystallographic structures of this cysteine protease

in its wild-type free active site state at 1.8 Å resolution, in its acyl-enzyme intermediate state

with the native C-terminal autocleavage sequence at 1.95 Å resolution and in its product
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symmetry-related monomer (chain B; Fig. 1b). In the mature
enzyme (residues 1–306), the C-terminal autocleavage sequence
Ser301–Gln306 packs at the dimerization interface as observed in
chain A; however, in chain B it is instead rotated almost 180°
toward domain III and inserted into the neighboring active site,
occupying the S6–S1 substrate binding pockets (Fig. 1c). This
results in one protomer with substrate bound and one empty in
each dimer pair. For the wild-type acyl-enzyme intermediate
complex, there is clear continuous density showing the carbonyl
carbon atom of the C-terminal Gln306 covalently bound to the
sulfur atom of catalytic Cys145 (Fig. 1d and Supplementary
Fig. 5a). The C-terminal autocleavage site binds within the
substrate binding groove in an extended conformation (Figs. 1c
and 2a, b), making antiparallel β-sheet, as well as side chain-
mediated hydrogen bond interactions with residues 164–166 of β-
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both regions which directly bind substrate, suggesting an unusual
expansion of the binding groove rather than constriction typical
of most serine proteases16 is required for the C-terminal
autoprocessing substrate to optimally fit into the Mpro active
site. Interestingly, if the same overlap is done with the empty
protomer (chain A) in the acyl-enzyme intermediate or product
complex dimers, this expansion is only observed for residues
187–191 and to a lesser degree, suggesting possible allosteric
communication between the two protomers of the active dimeric
form upon substrate binding.

Important aspects of solvation/desolvation in formation of the
acyl-enzyme intermediate are also interpreted from our data.
Displacement of three highly ordered water molecules visible in
the wild-type substrate-free structure occupy the position of the
substrate carboxyl oxygen in the oxyanion hole, the Gln306 (P1)
side chain oxygen, and Thr304 (P3) main chain carbonyl oxygen
(Fig. 2b). These same highly ordered water molecules are typically
observed in other SARS-CoV-2 Mpro structures, including the
highest resolution structure yet reported at 1.25 Å (ref. 5; PDB
6YB7), although in that case a DMSO molecule is observed in the
P1 site with the sulfoxide oxygen overlapping the water binding
location. Notably, an additional, unique water position, in
keeping with that of a deacylating water nucleophile, is observed
in the acyl-enzyme intermediate structure, with weak but
significant density (Fig. 1d). Positioned orthogonally with respect
to the other atoms in the trigonal planar thioester group (Fig. 2c),
the 1.95 Å resolution allows for a measurement of the
approximate attack angle that the oxygen of this water (upon
activation, the hydroxide anion, OH−
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phenyl biaryl groups is likely to occupy the S3′ subsite,
overlapping the position of SARS-CoV-1 Phe309 (P3′) or the
equivalent SARS-CoV-2 Val (P3′; Fig. 5d). We note the only
substitution between SARS-CoV-1 and -2 Mpro in the S3′ site—
A46S—is in close proximity to the phenyl biaryl and the Ser46
hydroxyl could be a unique site to engage for further

http://doi.org/10.2210/pdb6WNP/pdb
http://doi.org/10.2210/pdb7C7P/pdb
http://doi.org/10.2210/pdb6LZE/pdb
http://doi.org/10.2210/pdb6M0K/pdb
http://doi.org/10.2210/pdb6Y2G/pdb
http://doi.org/10.2210/pdb7C7P/pdb
http://doi.org/10.2210/pdb5R7Y/pdb
http://doi.org/10.2210/pdb5R83/pdb
http://doi.org/10.2210/pdb5RFT/pdb
http://doi.org/10.2210/pdb5RFA/pdb
www.nature.com/naturecommunications


http://doi.org/10.2210/pdb6M03/pdb
http://doi.org/10.2210/pdb6LU7/pdb
www.nature.com/naturecommunications
www.nature.com/naturecommunications


1.37, clashscore of 3.64 and 98.68% Ramachandran favored, and 0.33% Rama-
chandran outliers.

Secondary structure analysis was carried out using STRIDE50. Solvent accessible
and buried surfaces were calculated using Areaimol15. All structure analysis and
figure preparation was carried out with PyMOL (The PyMOL Molecular Graphics
System, Version 2.1 Schrödinger, LLC) and Chimera51.

Docking. Before docking, protein structures were optimized using Protein Pre-
paration Wizard module (Small-Molecule Drug Discovery Suite 2019-1, Schrö-
dinger LLC, New York, NY, USA 2019). Docking grids were centered to the C-
terminal substrates. Ligands were prepared using OpenEye’s tautomers module, in
order to assign the correct ionization and tautomeric form at pH 7.4 (QUACPAC
2.0.2.2. OpenEye Scientific Software, Santa Fe, NM, USA 2019). One low-energy
3D conformation was generated for each ligand, using Openeye’s omega program
in classic mode52. Docking was performed with Glide Single Precision module53.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Structure factors and atomic coordinates have been deposited with the protein data bank
with accession codes PDB ID 7KHP, 7JOY, and 7JP1. BioSAXS data have been deposited
with SASBDB with accession code SASDJG5 and SASDJH5. Other data are available
from the corresponding author upon reasonable request. Source data are provided with
this paper.
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