List of Figures

1.1	A chart (, U) and projection mappings	 					2
	Two charts in M and a coordinate transformation.						
1.3	The polar coordinate chart.	 					4

List of Figures xv

2.10	Three massive particles falling freely in space under Earth's gravity	140
2.11	Space and time trajectories of two geodesic particles freely falling to-	
	wards the Earth	141
2.12	Qualitative representation of a swarm of particles moving under the	
	influence of a gravitational field	142
2.13	Fig. a) shows the parallel transport along a non-geodesic curve.	
	Fig. b) depicts the F-W transport along the same curve	149
2.14	Measurement of a spacelike separation along the image	151
2.15	A material world tube in the domain $D_{(b)}$	166
2.16	Analytic extension of solutions from the original domain $D_{(e)}$ into $\tilde{\widehat{D}}$.	170
	Five two-dimensional surfaces with some peculiarities.	170
2.18	Fig. a) shows a material world tube. Fig. b) shows the continuous U	
	field over	188
2.19	A doubly-sliced world tube of an isolated, extended material body	191
2.20	Domain $D:=D_{(0)}\times (0,t_1)\subset \mathbb{R}^4$ for the initial value problem	208
3.1	Two-dimensional submanifold M_2 of the Schwarzschild space-time	
3.2	Rosette motion of a planet and the perihelion shift	
3.3	The deflection of light around the Sun.	
3.4	Two t-coordinate lines endowed with ideal clocks	
3.5	Qualitative representation of a spherical body inside a concentric shell.	
3.6	A convex domain D in a two-dimensional coordinate plane	270
4.1	The two-dimensional and the corresponding axially symmetric three-	
	dimensional domain.	290
4.2	Two axially symmetric bodies in "Euclidean coordinate spaces"	293
4.3	A massive, charged particle at $x_{(1)}$ and a point x in the extended body	
	11 massive, charged particle at $x_{(1)}$ and a point x in the extended body	0_0
5.1	Qualitative picture depicting two mappings from the Lemaître chart	
5.2	The graph of the semi-cubical parabola $(\hat{\mathbf{r}})^3 = (\hat{})^2$	368
5.3	The mapping X and its restrictions $X_{ \dots}$	374
5.4	The graph of the Lambert W-function.	375
5.5	Four domains covered by the doubly-null, $\mathbf{u} - \mathbf{v}$ coordinate chart	377
5.6	The maximal extension of the Schwarzschild chart	378
5.7	Intersection of two surfaces of revolution in the maximally extended	
	Schwarzschild universe	382
5.8	Eddington-Finkelstein coordinates $(\hat{\mathbf{u}}, \hat{\mathbf{v}})$ describing a black hole	383
5.9	Qualitative graph of M(r)	385
5.10	Collapse of a dust ball into a black hole in a Tolman-Bondi-Lemaître	
	chart	387
5.11	Collapse of a dust ball into a black hole in Kruskal-Szekeres coordinates.	388
	Qualitative representation of a collapsing spherically symmetric star	
	in three instants.	389
5.13	Boundary of the collapsing surface and the (absolute) event horizon.	390
	Various profile curves representing horizons in the submanifold =	
	/2. t = const in the Kerr space-time.	402

xvi List of Figures

5.15	Locations of horizons, ergosphere, ring singularity etc. in the Kerr-	
	submanifold $\mathbf{x}^4 = \text{const.} \dots \dots \dots \dots \dots$	404
5.16	The region of validity for the metric in (5.100iii) and (5.99)	410
5.17	The region of validity for the metric in (5.101)	411
5.18	The submanifold M_2^{\ast} and its two coordinate charts	412
5.19	The maximally extended Kerr submanifold \widetilde{M}_2^*	413
5.20	Qualitative representation of n o o in the T -domain and	
	the Kruskal-Szekeres chart.	423
5.21	Collapse into an exotic black hole depicted by four coordinate charts.	430
5.22	Qualitative graphs of $y = [(s)]^{-1}$ and the straight line $y = (s) :=$	
	$y_0 + (1/3) \cdot (s - s_0)$	433
6.1	Qualitative graphs for the "radius of the universe" as a function of	
	time in three Friedmann (or standard) models.	440
6.2	Qualitative representation of a submanifold	

List of Figures xvii

A6.3	A cross section of a wormhole profile curve and corresponding surface	
	of revolution	657
A6.4	A "top-hat" function.	660
A6.5	The expansion of spatial volume elements in a warp-drive space-time.	661
A6.6	The distribution of energy density for a warp-drive space-time	662
A6.7	Two examples of closed timelike curves	663
A6.8	The embedding of anti-de Sitter space-time in a five dimensional flat	
	space-time with two dimensions suppressed	664
A6.9	The light-cone structure about an axis $= 0$ in the Gödel space-time.	665