Volume of a sphere with a hole drilled through its centre. Andrew DeBenedictis.

In the diagram below a hole is drilled through the centre of the sphere. We know the length h (2h is the height of the removed cylinder) and *nothing else!*. The claim is that the volume of the remaining solid is $\frac{4}{3}$ h^3 . i.e. the volume of a sphere of radius h!

Figure 1: We know the length h and nothing else. What's the volume of the remaining solid?

The volume element in cylindrical coordinates:

where R is the radius of the original sphere (a quantity we do not know). The quantity r_0 is the radius of the bored out cylinder:

$$r_0 = \overline{R^2 - h^2}. \tag{1}$$

Integrating over the upper-half of the solid and multiplying by two:

$$V = 2 \int_{\substack{z=0 \ r=r_0 \ h}}^{h} \sqrt{R^2-z^2} \frac{2\pi}{dV}$$

$$= 2 \int_{\substack{z=0 \ r=r_0 \ z=0 \ r=r_0}}^{h} \sqrt{R^2-z^2} \frac{2\pi}{2\pi}$$

$$= 2 \int_{\substack{z=0 \ r=r_0 \ z=0}}^{h} rd dr dz$$

$$= 2 h R^2 - \frac{h^2}{3} - r_0^2 .$$

By putting in r_0 from (1) we get

$$V=\frac{4}{3} h^3.$$