Please note:
To view the current Academic Calendar, go to www.sfu.ca/students/calendar.html.
Computing Science Second Degree Major
This program provides students who already have a bachelor degree in another discipline a way to obtain a bachelor of science (BSc) or bachelor of arts (BA) degree with a major in computing science.
¶¡ÏãÔ°AV Requirements
This is a direct admission program and holders of a recognized bachelor's degree in another discipline may follow this program to earn a second degree.
Applicants should indicate their program interest by selecting computing science, Faculty of Applied Sciences BSc major as their first choice.
¶¡ÏãÔ°AV is competitive and based on the upper division (third and fourth year) performance in the prior bachelor's degree and a program Computing Related GPA (CRGPA). Applicants must have completed the following courses, or courses equivalent to them: MACM 101 and (CMPT 125, 129 or 135). The CRGPA is computed based on all courses equivalent to ¶¡ÏãÔ°AV CMPT or MACM courses. Professional experience in a relevant work environment where English was the working language may be taken into account.
Continuation Requirements
Students who do not maintain at least a 2.40 CGPA will be placed on probation within the School. Courses available to probationary students may be limited. Each term, these students must prior to enrollment and must achieve either a term 2.40 term GPA or an improved CGPA. Students who fail to do so may be removed from the program.
Reinstatement from probationary standing occurs when the CGPA improves to 2.40 or better and is maintained.
Graduation Requirements
A GPA of 2.00 must be obtained for upper division courses used to fulfill the program requirements.
Prerequisite Grade Requirement
Computing science course entry requires a grade of C- or better in each prerequisite course.
A minimum 2.40 cumulative grade point average is required for 200, 300 and 400 level courses. For complete information, contact an
Students must obtain permission from the department if they wish to complete, for further credit, any course that is a prerequisite for a course the student has already completed with a grade of C- or higher.
Program Requirements
Students must consult an before commencing the program.
Lower Division Requirements
Students will need to apply for course waivers for the lower division prerequisites prior to starting the program. If lower division prerequisites have not been met, required courses may be taken at ¶¡ÏãÔ°AV.
Upper Division Requirements
In accord with University regulations, this second degree program consists of the upper division requirements of the program as described below.
Students complete at least 45 upper division units including
Covers professional writing in computing science, including format conventions and technical reports. Attention is paid to group dynamics, including team leadership, dispute resolution, cognitive bias, professional ethics and collaborative writing. Research methods are also discussed. The use of LaTeX and various version control tools are emphasized. Prerequisite: CMPT 105W and (CMPT 275 or CMPT 276), with a minimum grade of C-. Students with credit for CMPT 376 may not take this course for further credit. Writing.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Jacqueline Nelsen Milan Tofiloski |
May 10 – Aug 8, 2022: Mon, 12:30–1:20 p.m.
May 10 – Aug 8, 2022: Thu, 12:30–2:20 p.m. |
Burnaby Burnaby |
Breadth Requirement
Five courses from five of the six Table I areas of concentration must be completed including both of
This course aims to give the student an understanding of what a modern operating system is, and the services it provides. It also discusses some basic issues in operating systems and provides solutions. Topics include multiprogramming, process management, memory management, and file systems. Prerequisite: CMPT 225 and (CMPT 295 or ENSC 254), all with a minimum grade of C-.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Hazra Imran |
May 10 – Aug 8, 2022: Mon, Wed, Fri, 1:30–2:20 p.m.
|
Burnaby |
Design and analysis of efficient data structures and algorithms. General techniques for building and analyzing algorithms (greedy, divide & conquer, dynamic programming, network flows). Introduction to NP-completeness. Prerequisite: CMPT 225, MACM 201, (MATH 150 or MATH 151), and (MATH 232 or MATH 240), all with a minimum grade of C-. MATH 154 or MATH 157 with a grade of at least B+ may be substituted for MATH 150 or MATH 151.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Thomas Shermer |
May 10 – Aug 8, 2022: Tue, 12:30–2:20 p.m.
May 10 – Aug 8, 2022: Fri, 12:30–1:20 p.m. |
Burnaby Burnaby |
CMPT 354 is also recommended.
Depth Requirement
Twelve units of additional CMPT courses numbered CMPT 400 or above must be completed (excluding CMPT 415, 416 and 498, which may be included by special permission).
BSc Credential
For a BSc computing science degree, the following additional requirements must be met.
two additional courses chosen from Table I, Table II or Table III
A presentation of the problems commonly arising in numerical analysis and scientific computing and the basic methods for their solutions. Prerequisite: MATH 152 or 155 or 158, and MATH 232 or 240, and computing experience. Quantitative.
Section | Instructor | Day/Time | Location |
---|---|---|---|
JF Williams |
May 10 – Aug 8, 2022: Mon, Wed, Fri, 10:30–11:20 a.m.
|
Burnaby |
|
D101 |
May 10 – Aug 8, 2022: Mon, 2:30–3:20 p.m.
|
Burnaby |
|
D102 |
May 10 – Aug 8, 2022: Mon, 3:30–4:20 p.m.
|
Burnaby |
|
D103 |
May 10 – Aug 8, 2022: Mon, 4:30–5:20 p.m.
|
Burnaby |
|
D104 |
May 10 – Aug 8, 2022: Tue, 11:30 a.m.–12:20 p.m.
|
Burnaby |
|
D105 |
May 10 – Aug 8, 2022: Tue, 12:30–1:20 p.m.
|
Burnaby |
|
D106 |
May 10 – Aug 8, 2022: Tue, 1:30–2:20 p.m.
|
Burnaby |
|
D107 |
May 10 – Aug 8, 2022: Mon, 5:30–6:20 p.m.
|
Burnaby |
|
D108 |
May 10 – Aug 8, 2022: Tue, 10:30–11:20 a.m.
|
Burnaby |
BA Credential
For a BA computing science degree within the Faculty of Applied Sciences, the following additional requirements must be met.
one additional CMPT upper division course chosen from Table I or Table II must be completed bringing the total upper division units in CMPT courses to a minimum of 30 units.
a concentration of 15 units in a Faculty of Arts and Social Sciences discipline (department) including at least six units of upper division credit.
Areas of Concentration
The primary upper division requirements are structured according to breadth, depth and credential requirements as listed below.
As part of a major program, students may complete one or more areas of concentrations from the six areas listed in Table I. To complete a concentration, students complete the major requirements, including four courses in the corresponding area as listed in Table I, two of which must be at the 400 division. Courses used to meet the requirements of a concentration may also be used to meet other program requirements.
Table I – Computing Science Concentrations
Artificial Intelligence
A survey of modern approaches for artificial intelligence (AI). Provides an introduction to a variety of AI topics and prepares students for upper-level courses. Topics include: problem solving with search; adversarial game playing; probability and Bayesian networks; machine learning; and applications such as robotics, visual computing and natural language. Prerequisite: CMPT 225 and (MACM 101 or (ENSC 251 and ENSC 252)), all with a minimum grade of C-.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Steve Pearce |
May 10 – Aug 8, 2022: Mon, 8:30–9:20 a.m.
May 10 – Aug 8, 2022: Thu, 8:30–10:20 a.m. |
Burnaby Burnaby |
The principles involved in using computers for data acquisition, real-time processing, pattern recognition and experimental control in biology and medicine will be developed. The use of large data bases and simulation will be explored. Prerequisite: Completion of 60 units including one of CMPT 125, 126, 128, 135, with a minimum grade of C- or CMPT 102 with a grade of B or higher.
Formal and foundational issues dealing with the representation of knowledge in artificial intelligence systems are covered. Questions of semantics, incompleteness, non-monotonicity and others will be examined. As well, particular approaches, such as procedural or semantic network, may be discussed. Prerequisite: Completion of nine units in Computing Science upper division courses or, in exceptional cases, permission of the instructor.
Computational approaches to image understanding will be discussed in relation to theories about the operation of the human visual system and with respect to practical applications in robotics. Topics will include edge detection, shape from shading, stereopsis, optical flow, Fourier methods, gradient space, three-dimensional object representation and constraint satisfaction. Prerequisite: MATH 152 with a minimum grade of C-, and nine units in Computing upper division courses or permission of the instructor.
This course examines the theoretical and applied problems of constructing and modelling systems, which aim to extract and represent the meaning of natural language sentences or of whole discourses, but drawing on contributions from the fields of linguistics, cognitive psychology, artificial intelligence and computing science. Prerequisite: Completion of nine units in Computing Science upper division courses or, in exceptional cases, permission of the instructor.
This course covers various topics in computer vision with the emphasis on the model-based approach. Main subjects include 2-D and 3-D representations, matching, constraint relaxation, model-based vision systems. State-of-the-art robot vision systems will be used extensively as study cases. The solid modelling and CAD aspects of this course should also interest students of computer graphics. Prerequisite: MATH 152 with a minimum grade of C- and nine units in CMPT upper division courses, or permission of the instructor.
Intelligent Systems using modern constraint programming and heuristic search methods. A survey of this rapidly advancing technology as applied to scheduling, planning, design and configuration. An introduction to constraint programming, heuristic search, constructive (backtrack) search, iterative improvement (local) search, mixed-initiative systems and combinatorial optimization. Prerequisite: CMPT 225 with a minimum grade of C-.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Hang Ma |
May 10 – Aug 8, 2022: Mon, 12:30–1:20 p.m.
May 10 – Aug 8, 2022: Thu, 12:30–2:20 p.m. |
Burnaby Burnaby |
Current topics in artificial intelligence depending on faculty and student interest.
Computer Graphics and Multimedia
This course provides an introduction to the fundamentals of computer graphics. Topics include graphics display and interaction hardware, basic algorithms for 2D primitives, anti-aliasing, 2D and 3D geometrical transformations, 3D projections/viewing, Polygonal and hierarchical models, hidden-surface removal, basic rendering techniques (color, shading, raytracing, radiosity), and interaction techniques. Prerequisite: CMPT 225 and MATH 232 or 240, all with a minimum grade of C-.
Section | Instructor | Day/Time | Location |
---|---|---|---|
KangKang Yin |
May 10 – Aug 8, 2022: Mon, Wed, Fri, 10:30–11:20 a.m.
|
Burnaby |
This course provides a comprehensive study of user interface design. Topics include: goals and principles of UI design (systems engineering and human factors), historical perspective, current paradigms (widget-based, mental model, graphic design, ergonomics, metaphor, constructivist/iterative approach, and visual languages) and their evaluation, existing tools and packages (dialogue models, event-based systems, prototyping), future paradigms, and the social impact of UI. Prerequisite: CMPT 225 with a minimum grade of C-.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Paul Hibbitts |
May 10 – Aug 8, 2022: Tue, 2:30–4:20 p.m.
May 10 – Aug 8, 2022: Fri, 2:30–3:20 p.m. |
Burnaby Burnaby |
Multimedia systems design, multimedia hardware and software, issues in effectively representing, processing, and retrieving multimedia data such as text, graphics, sound and music, image and video. Prerequisite: CMPT 225 with a minimum grade of C-.
Computational Photography is concerned with overcoming the limitations of traditional photography with computation: in optics, sensors, and geometry; and even in composition, style, and human interfaces. The course covers computational techniques to improve the way we process, manipulate, and interact with visual media. The covered topics include image-based lighting and rendering, camera geometry and optics, computational apertures, advanced image filtering operations, high-dynamic range, image blending, texture synthesis and inpainting. Prerequisite: CMPT 361, MACM 201 and 316, all with a minimum grade of C-. Students with credit for CMPT 451 may not take this course for further credit.
Covers advanced topics in geometric modelling and processing for computer graphics, such as Bezier and B-spline techniques, subdivision curves and surfaces, solid modelling, implicit representation, surface reconstruction, multi-resolution modelling, digital geometry processing (e.g. mesh smoothing, compression, and parameterization), point-based representation, and procedural modelling. Prerequisite: CMPT 361, MACM 316, both with a minimum grade of C-. Students with credit for CMPT 469 between 2003 and 2007 or equivalent may not take this course for further credit.
Topics and techniques in animation, including: The history of animation, computers in animation, traditional animation approaches, and computer animation techniques such as geometric modelling, interpolation, camera controls, kinematics, dynamics, constraint-based animation, realistic motion, temporal aliasing, digital effects and post production. Prerequisite: CMPT 361 and MACM 316, with a minimum grade of C- or permission of the instructor.
Presents advanced topics in the field of scientific and information visualization. Topics include an introduction to visualization (importance, basic approaches, and existing tools), abstract visualization concepts, human perception, visualization methodology, data representation, 2D and 3D display, interactive visualization, and their use in medical, scientific, and business applications. Prerequisite: CMPT 361, MACM 316, both with a minimum grade of C-.
Current topics in computer graphics depending on faculty and student interest. Prerequisite: CMPT 361 with a minimum grade of C-.
Computing Systems
This course aims to give the student an understanding of what a modern operating system is, and the services it provides. It also discusses some basic issues in operating systems and provides solutions. Topics include multiprogramming, process management, memory management, and file systems. Prerequisite: CMPT 225 and (CMPT 295 or ENSC 254), all with a minimum grade of C-.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Hazra Imran |
May 10 – Aug 8, 2022: Mon, Wed, Fri, 1:30–2:20 p.m.
|
Burnaby |
This course is an introduction to the modelling, analysis, and computer simulation of complex systems. Topics include analytic modelling, discrete event simulation, experimental design, random number generation, and statistical analysis. Prerequisite: CMPT 225, (MACM 101 or (ENSC 251 and ENSC 252)) and STAT 270, all with a minimum grade of C-.
Data communication fundamentals (data types, rates, and transmission media). Network architectures for local and wide areas. Communications protocols suitable for various architectures. ISO protocols and internetworking. Performance analysis under various loadings and channel error rates. Prerequisite: CMPT 225 and (MATH 151 or MATH 150), with a minimum grade of C-. MATH 154 or MATH 157 with a grade of at least B+ may be substituted for MATH 151 (MATH 150).
Section | Instructor | Day/Time | Location |
---|---|---|---|
May 10 – Aug 8, 2022: Mon, Wed, Fri, 4:30–5:20 p.m.
|
Surrey |
This course covers the key components of a compiler for a high level programming language. Topics include lexical analysis, parsing, type checking, code generation and optimization. Students will work in teams to design and implement an actual compiler making use of tools such as lex and yacc. Prerequisite: MACM 201, (CMPT 295 or ENSC 215) and CMPT 225, all with a minimum grade of C-.
An introduction to distributed systems: systems consisting of multiple physical components connected over a network. Architectures of such systems, ranging from client-server to peer-to-peer. Distributed systems are analyzed via case studies of real network file systems, replicated systems, sensor networks and peer-to-peer systems. Hands-on experience designing and implementing a complex distributed system. Prerequisite: CMPT 300, 371, both with a minimum grade of C-. Students with credit for CMPT 401 before September 2008 may not take this course for further credit.
The basics of embedded system organization, hardware-software co-design, and programmable chip technologies are studied. Formal models and specification languages for capturing and analyzing the behavior of embedded systems. The design and use of tools for system partitioning and hardware/software co-design implementation, validation, and verification are also studied. Prerequisite: CMPT 295 and CMPT 300, with a minimum grade of C-.
Principles of the architecture of computing systems. Topics include: superscalar processor micro-architecture, speculative execution, cache and memory hierarchy, multiprocessors, cache coherence, memory consistency, implications of technology on architecture, parallel architectures (multi-threading, GPUs, vector processors). Prerequisite: CMPT 295 with a minimum grade of C-.
Current topics in computing systems depending on faculty and student interest. Prerequisite: CMPT 300 with a minimum grade of C-.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Tao Wang |
May 10 – Aug 8, 2022: Mon, Wed, Fri, 9:30–10:20 a.m.
|
Burnaby |
Current topics in computer hardware depending on faculty and student interest. Prerequisite: CMPT 250 or ENSC 250, with a minimum grade of C-.
Information Systems
Basic concepts and programming tools for handling and processing data. Includes data acquisition, cleaning data sources, application of machine learning techniques and data analysis techniques, large-scale computation on a computing cluster. Prerequisite: CMPT 225 and (STAT 101, STAT 270, ENSC 280, or MSE 210), with a minimum grade of C-.
Logical representations of data records. Data models. Studies of some popular file and database systems. Document retrieval. Other related issues such as database administration, data dictionary and security. Prerequisite: CMPT 225 and (MACM 101 or (ENSC 251 and ENSC 252)), all with a minimum grade of C-.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Hazra Imran |
May 10 – Aug 8, 2022: Mon, Wed, 11:30 a.m.–12:20 p.m.
May 10 – Aug 8, 2022: Fri, 11:30 a.m.–12:20 p.m. |
Burnaby Burnaby |
This course introduces students to the computing science principles underlying computational biology. The emphasis is on the design, analysis and implementation of computational techniques. Possible topics include algorithms for sequence alignment, database searching, gene finding, phylogeny and structure analysis. Prerequisite: CMPT 307 with a minimum grade of C-. Students with credit for CMPT 341 may not take this course for further credit.
An advanced course on database systems which covers crash recovery, concurrency control, transaction processing, distributed database systems as the core material and a set of selected topics based on the new developments and research interests, such as object-oriented data models and systems, extended relational systems, deductive database systems, and security and integrity. Prerequisite: CMPT 300 and 354, with a minimum grade of C-.
Section | Instructor | Day/Time | Location |
---|---|---|---|
John Edgar |
May 10 – Aug 8, 2022: Mon, Wed, Fri, 11:30 a.m.–12:20 p.m.
|
Surrey |
Introduction to the essentials of information retrieval and the applications of information retrieval in web search and web information systems. Topics include the major models of information retrieval, similarity search, text content search, link structures and web graphics, web mining and applications, crawling, search engines, and some advanced topics such as spam detection, online advertisement, and fraud detection in online auctions. Prerequisite: CMPT 354 with a minimum grade of C-.
Current topics in database and information systems depending on faculty and student interest. Prerequisite: CMPT 354 with a minimum grade of C-.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Tianzheng Wang |
May 10 – Aug 8, 2022: Tue, 2:30–5:20 p.m.
|
Burnaby |
This course examines: two-tier/multi-tier client/server architectures; the architecture of a Web-based information system; web servers/browser; programming/scripting tools for clients and servers; database access; transport of programming objects; messaging systems; security; and applications (such as e-commerce and on-line learning). Prerequisite: (CMPT 275 or CMPT 276) and CMPT 354, with a minimum grade of C-.
Web service based systems are fundamentally different from traditional software systems. The conceptual and methodological differences between a standard software development process and the development of a web service based information system. The technology involved during the construction of their own web service based application in an extensive project. Prerequisite: CMPT 371 with a minimum grade of C-.
Programming Languages and Software
Survey of modern software development methodology. Several software development process models will be examined, as will the general principles behind such models. Provides experience with different programming paradigms and their advantages and disadvantages during software development. Prerequisite: CMPT 276 or 275, with a minimum grade of C-.
Various concepts and principles underlying the design and use of modern programming languages are considered in the context of procedural, object-oriented, functional and logic programming languages. Topics include data and control structuring constructs, facilities for modularity and data abstraction, polymorphism, syntax, and formal semantics. Prerequisite: CMPT 225 and (MACM 101 or (ENSC 251 and ENSC 252)), all with a minimum grade of C-.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Toby Donaldson |
May 10 – Aug 8, 2022: Tue, 12:30–2:20 p.m.
May 10 – Aug 8, 2022: Fri, 12:30–1:20 p.m. |
Surrey Surrey |
This course considers modelling and programming techniques appropriate for symbolic data domains such as mathematical expressions, logical formulas, grammars and programming languages. Topics include recursive and functional programming style, grammar-based data abstraction, simplification and reduction transformations, conversions to canonical form, environment data structures and interpreters, metaprogramming, pattern matching and theorem proving. Prerequisite: CMPT 225 and (MACM 101 or (ENSC 251 and ENSC 252)), all with a minimum grade of C-.
Methods for software quality assurance focusing on reliability and security. Test coverage and test data adequacy including combinatorial testing. MC/DC testing, and mutation testing. Security engineering techniques for vulnerability discovery and mitigation including fuzz testing. Testing techniques will be applied to the assessment of external open source software. Prerequisite: (CMPT 275 or CMPT 276) with a minimum grade of C- and 15 upper division CMPT units.
Software succeeds when it is well-matched to its intended purpose. Requirements engineering is the process of discovering that purpose by making requirements explicit and documenting them in a form amenable to analysis, reasoning, and validation, establishing the key attributes of a system prior to its construction. Students will learn methodical approaches to requirements analysis and design specification in early systems development phases, along with best practices and common principles to cope with notoriously changing requirements. Prerequisite: CMPT 275 or 276, MACM 201, all with a minimum grade of C- and 15 units of upper division courses. Recommended: Co-op experience.
Introduces, at an accessible level, a formal framework for symbolic model checking, one of the most important verification methods. The techniques are illustrated with examples of verification of reactive systems and communication protocols. Students learn to work with a model checking tool. Prerequisite: CMPT 275 or 276, with a minimum grade of C-.
Current topics in programming languages depending on faculty and student interest. Prerequisite: CMPT 383 with a minimum grade of C-.
Theoretical Computing Science
Design and analysis of efficient data structures and algorithms. General techniques for building and analyzing algorithms (greedy, divide & conquer, dynamic programming, network flows). Introduction to NP-completeness. Prerequisite: CMPT 225, MACM 201, (MATH 150 or MATH 151), and (MATH 232 or MATH 240), all with a minimum grade of C-. MATH 154 or MATH 157 with a grade of at least B+ may be substituted for MATH 150 or MATH 151.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Thomas Shermer |
May 10 – Aug 8, 2022: Tue, 12:30–2:20 p.m.
May 10 – Aug 8, 2022: Fri, 12:30–1:20 p.m. |
Burnaby Burnaby |
Formal models of computation such as automata and Turing machines. Decidability and undecidability. Recursion Theorem. Connections between computability and logic (Gödel’s Incompleteness). Time and space complexity classes. NP-completeness. Prerequisite: MACM 201 with a minimum grade of C-.
The main cryptographic tools and primitives, their use in cryptographic applications; security and weaknesses of the current protocols. The notion of security, standard encryption schemes, digital signatures, zero-knowledge, selected other topics. Prerequisite: MACM 201 with a minimum grade of C-. CMPT 307 and 308 are recommended.
Models of computation, methods of algorithm design; complexity of algorithms; algorithms on graphs, NP-completeness, approximation algorithms, selected topics. Prerequisite: CMPT 307 with a minimum grade of C-.
Study of what is, and is not, efficiently computable with limited resources (time, space, randomness, parallelism, nondeterminism, interaction, and quantum). Complexity classes and connections among them. Interplay between complexity and algorithm design. Prerequisite: CMPT 307 with a minimum grade of C-. CMPT 308 is recommended.
Current topics in theoretical computing science depending on faculty and student interest. Prerequisite: CMPT 307 with a minimum grade of C-.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Steve Pearce |
May 10 – Aug 8, 2022: Mon, 2:30–3:20 p.m.
May 10 – Aug 8, 2022: Thu, 2:30–4:20 p.m. |
Burnaby Burnaby |
Languages, grammars, automata and their applications to natural and formal language processing. Prerequisite: MACM 201. Quantitative.
Table II – Application Courses
Currently no courses.
Table III – Computing Mathematics Courses
A presentation of the problems commonly arising in numerical analysis and scientific computing and the basic methods for their solutions. Prerequisite: MATH 152 or 155 or 158, and MATH 232 or 240, and computing experience. Quantitative.
Section | Instructor | Day/Time | Location |
---|---|---|---|
JF Williams |
May 10 – Aug 8, 2022: Mon, Wed, Fri, 10:30–11:20 a.m.
|
Burnaby |
|
D101 |
May 10 – Aug 8, 2022: Mon, 2:30–3:20 p.m.
|
Burnaby |
|
D102 |
May 10 – Aug 8, 2022: Mon, 3:30–4:20 p.m.
|
Burnaby |
|
D103 |
May 10 – Aug 8, 2022: Mon, 4:30–5:20 p.m.
|
Burnaby |
|
D104 |
May 10 – Aug 8, 2022: Tue, 11:30 a.m.–12:20 p.m.
|
Burnaby |
|
D105 |
May 10 – Aug 8, 2022: Tue, 12:30–1:20 p.m.
|
Burnaby |
|
D106 |
May 10 – Aug 8, 2022: Tue, 1:30–2:20 p.m.
|
Burnaby |
|
D107 |
May 10 – Aug 8, 2022: Mon, 5:30–6:20 p.m.
|
Burnaby |
|
D108 |
May 10 – Aug 8, 2022: Tue, 10:30–11:20 a.m.
|
Burnaby |
Data structures and algorithms for mathematical objects. Topics include long integer arithmetic, computing polynomial greatest common divisors, the fast Fourier transform, Hensel's lemma and p-adic methods, differentiation and simplification of formulae, and polynomial factorization. Students will use a computer algebra system such as Maple for calculations and programming. Prerequisite: CMPT 307 or ((MATH 340 or MATH 342) and (CMPT 225 or MACM 204)). Quantitative.
An introduction to the subject of modern cryptography. Classical methods for cryptography and how to break them, the data encryption standard (DES), the advanced encryption standard (AES), the RSA and ElGammal public key cryptosystems, digital signatures, secure hash functions and pseudo-random number generation. Algorithms for computing with long integers including the use of probabilistic algorithms. Prerequisite: (CMPT 201 or 225) and one of (MATH 340 or 332 or 342); or CMPT 405. Students with credit for MACM 498 between Fall 2003 and Spring 2006 may not take this course for further credit. Quantitative.
Linear programming modelling. The simplex method and its variants. Duality theory. Post-optimality analysis. Applications and software. Additional topics may include: game theory, network simplex algorithm, and convex sets. Prerequisite: MATH 150, 151, 154, or 157 and MATH 240 or 232, all with a minimum grade of C-. Quantitative.
The integers, fundamental theorem of arithmetic. Equivalence relations, modular arithmetic. Univariate polynomials, unique factorization. Rings and fields. Units, zero divisors, integral domains. Ideals, ring homomorphisms. Quotient rings, the ring isomorphism theorem. Chinese remainder theorem. Euclidean, principal ideal, and unique factorization domains. Field extensions, minimal polynomials. Classification of finite fields. Prerequisite: MATH 240 with a minimum grade of C- or MATH 232 with a grade of at least B. Students with credit for MATH 332 may not take this course for further credit. Quantitative.
Structures and algorithms, generating elementary combinatorial objects, counting (integer partitions, set partitions, Catalan families), backtracking algorithms, branch and bound, heuristic search algorithms. Prerequisite: MACM 201 (with a grade of at least B-). Recommended: knowledge of a programming language. Quantitative.
Other Courses Per Department Approval
The following courses may be counted in one of the above tables with permission of the school.
Special topics in computing science at the 300 level. Topics that are of current interest or are not covered in regular curriculum will be offered from time to time depending on availability of faculty and student interest. Prerequisite: CMPT 225 with a minimum grade of C-. Additional prerequisites to be determined by the instructor subject to approval by the undergraduate program chair.
Independent study in topics selected in consultation with the supervising instructor(s) that are not covered by existing course offerings. Students must submit a proposal to the undergraduate chair, including the name and signature of the supervising faculty member(s). The proposal must include details of the material to be covered and the work to be submitted. Prerequisite: Students must have completed 90 units, including 15 units of upper division CMPT courses, and have a GPA of at least 3.00. The proposal must be submitted to the undergraduate chair at least 15 days in advance of the term. The proposal must be signed by the supervisor(s) and the undergraduate chair.
Section | Instructor | Day/Time | Location |
---|---|---|---|
TBD |
Students will select one project to be completed in their final year of study. Each student must complete a project report and make a project presentation. The project may include: a research survey, a project implementation, a research paper/report. Prerequisite: Submission of a satisfactory capstone project proposal.
Section | Instructor | Day/Time | Location |
---|---|---|---|
TBD |
Students must submit a proposal to the Undergraduate Chair, including the name and signature of the supervising faculty member(s). Students must complete a project report and make a project presentation. This course can satisfy the research project requirements for Computing Science honours students. Prerequisite: Students must have completed 90 units, including 15 units of upper division CMPT courses, and have a GPA of at least 3.00. The proposal must be submitted to the Undergraduate Chair at least 15 days in advance of the term. The proposal must be signed by the supervisor(s) and the undergraduate chair.
Section | Instructor | Day/Time | Location |
---|---|---|---|
TBD | |||
TBD | |||
TBD |
Residency Requirements and Transfer Credit
- At least half of the program's total units must be earned through ¶¡ÏãÔ°AV study.
- At least two thirds of the program's total upper division units must be earned through ¶¡ÏãÔ°AV study.
Please see Faculty of Applied Sciences Residency Requirements for further information.
Elective Courses
In addition to the courses listed above, students should consult an to plan the remaining required elective courses.
Co-operative Education and Work Experience
All computing science students are strongly encouraged to explore the opportunities that Work Integrated Learning (WIL) can offer them. Please contact a during your first year of studies to ensure that you have all of the necessary courses and information to help plan for a successful co-op experience.