Ά‘ΟγΤ°AV

Please note:

To view the current Academic Calendar, go to www.sfu.ca/students/calendar.html.

| Ά‘ΟγΤ°AV Calendar | Summer 2022

Applied Physics Major

Bachelor of Science

This bachelor of science (BSc) program offers a solid physics background combined with the applied aspects of physics that is necessary for careers in high technology industries.

Minimum Grade Requirement

Students wishing to enroll in physics courses must obtain a C- grade or better in prerequisite courses.

Program Requirements

Students should enroll in the co-operative education program to acquire valuable industrial experience.

Lower Division Requirements

Complete all of

CHEM 121 - General Chemistry and Laboratory I (4)

Atomic and molecular structure; chemical bonding; thermochemistry; elements; periodic table; gases liquids, solids, and solutions. This course includes a laboratory component. Prerequisite: Chemistry 12 with a minimum grade of C, or CHEM 109 or 111 with a minimum grade of C-. Students with credit for CHEM 120 or 125 may not take this course for further credit. Quantitative/Breadth-Science.

Section Instructor Day/Time Location
Cameron Forde
May 10 – Aug 8, 2022: Mon, Wed, Fri, 10:30–11:20 a.m.
Burnaby
D101 May 10 – Aug 8, 2022: Wed, 9:30–10:20 a.m.
Burnaby
D102 May 10 – Aug 8, 2022: Wed, 11:30 a.m.–12:20 p.m.
Burnaby
D103 May 10 – Aug 8, 2022: Wed, 12:30–1:20 p.m.
Burnaby
D105 May 10 – Aug 8, 2022: Thu, 9:30–10:20 a.m.
Burnaby
D106 May 10 – Aug 8, 2022: Thu, 10:30–11:20 a.m.
Burnaby
D108 May 10 – Aug 8, 2022: Wed, 11:30 a.m.–12:20 p.m.
Burnaby
D109 May 10 – Aug 8, 2022: Fri, 11:30 a.m.–12:20 p.m.
Burnaby
D110 May 10 – Aug 8, 2022: Fri, 11:30 a.m.–12:20 p.m.
Burnaby
Garry Mund
May 10 – Aug 8, 2022: Mon, Wed, Fri, 10:30–11:20 a.m.
Surrey
D201 May 10 – Aug 8, 2022: Wed, 8:30–9:20 a.m.
Surrey
D202 May 10 – Aug 8, 2022: Wed, 9:30–10:20 a.m.
Surrey
D203 May 10 – Aug 8, 2022: Wed, 11:30 a.m.–12:20 p.m.
Surrey
D204 May 10 – Aug 8, 2022: Wed, 12:30–1:20 p.m.
Surrey
LA04 May 10 – Aug 8, 2022: Wed, 1:30–5:20 p.m.
Burnaby
LA06 May 10 – Aug 8, 2022: Thu, 1:30–5:20 p.m.
Burnaby
LB04 May 10 – Aug 8, 2022: Wed, 1:30–5:20 p.m.
Burnaby
LB06 May 10 – Aug 8, 2022: Thu, 1:30–5:20 p.m.
Burnaby
LC01 May 10 – Aug 8, 2022: Wed, 1:30–5:20 p.m.
Surrey
LE01 TBD
LE02 TBD
CHEM 122 - General Chemistry II (2)

Chemical equilibria; electrochemistry; chemical thermodynamics; kinetics. Students who intend to take further laboratory courses in chemistry should take CHEM 122 concurrently with CHEM 126. Prerequisite: CHEM 120 or 121 with a minimum grade of C-. Students with credit for CHEM 124 or CHEM 180 may not take this course for further credit. Quantitative.

Section Instructor Day/Time Location
Hogan Yu
May 10 – Aug 8, 2022: Mon, Wed, Fri, 12:30–1:20 p.m.
Burnaby
D101 May 10 – Aug 8, 2022: Wed, 1:30–2:20 p.m.
Burnaby
D102 May 10 – Aug 8, 2022: Wed, 2:30–3:20 p.m.
Burnaby
D103 May 10 – Aug 8, 2022: Wed, 3:30–4:20 p.m.
Burnaby
D104 May 10 – Aug 8, 2022: Thu, 10:30–11:20 a.m.
Burnaby
D105 May 10 – Aug 8, 2022: Fri, 11:30 a.m.–12:20 p.m.
Burnaby
D106 May 10 – Aug 8, 2022: Fri, 1:30–2:20 p.m.
Burnaby
D107 May 10 – Aug 8, 2022: Fri, 2:30–3:20 p.m.
Burnaby
CHEM 126 - General Chemistry Laboratory II (2)

Experiments in chemical equilibrium, acids and bases, qualitative analysis, electrochemistry and chemical kinetics. Prerequisite: CHEM 121 with a minimum grade of C-. Corequisite: CHEM 122. Quantitative.

Section Instructor Day/Time Location
Julie Lunniss
May 10 – Aug 8, 2022: Tue, 1:30–5:20 p.m.
Burnaby
Julie Lunniss
May 10 – Aug 8, 2022: Thu, 1:30–5:20 p.m.
Burnaby
MATH 152 - Calculus II (3)

Riemann sum, Fundamental Theorem of Calculus, definite, indefinite and improper integrals, approximate integration, integration techniques, applications of integration. First-order separable differential equations and growth models. Sequences and series, series tests, power series, convergence and applications of power series. Prerequisite: MATH 150 or 151, with a minimum grade of C-; or MATH 154 or 157 with a grade of at least B. Students with credit for MATH 155 or 158 may not take this course for further credit. Quantitative.

Section Instructor Day/Time Location
Randall Pyke
May 10 – Aug 8, 2022: Mon, Wed, Fri, 8:30–9:20 a.m.
Burnaby
OP01 TBD
MATH 251 - Calculus III (3)

Rectangular, cylindrical and spherical coordinates. Vectors, lines, planes, cylinders, quadric surfaces. Vector functions, curves, motion in space. Differential and integral calculus of several variables. Vector fields, line integrals, fundamental theorem for line integrals, Green's theorem. Prerequisite: MATH 152 with a minimum grade of C-; or MATH 155 or MATH 158 with a grade of at least B. Recommended: It is recommended that MATH 240 or 232 be taken before or concurrently with MATH 251. Quantitative.

Section Instructor Day/Time Location
Hansol Park
May 10 – Aug 8, 2022: Mon, Wed, Fri, 1:30–2:20 p.m.
Burnaby
Kthim Imeri
May 10 – Aug 8, 2022: Mon, Wed, Fri, 9:30–10:20 a.m.
Surrey
OP01 TBD
OP02 TBD
MATH 252 - Vector Calculus (3)

Vector calculus, divergence, gradient and curl; line, surface and volume integrals; conservative fields, theorems of Gauss, Green and Stokes; general curvilinear coordinates and tensor notation. Introduction to orthogonality of functions, orthogonal polynomials and Fourier series. Prerequisite: MATH 240 or 232, and 251, all with a minimum grade of C-. MATH 240 or 232 may be taken concurrently. Students with credit for MATH 254 may not take MATH 252 for further credit. Quantitative.

MATH 260 - Introduction to Ordinary Differential Equations (3)

First-order differential equations, second- and higher-order linear equations, series solutions, introduction to Laplace transform, systems and numerical methods, applications in the physical, biological and social sciences. Prerequisite: MATH 152 with a minimum grade of C-; or MATH 155 or 158, with a grade of at least B; MATH 232 or 240, with a minimum grade of C-. Students with credit for MATH 310 may not take this course for further credit. Quantitative.

Section Instructor Day/Time Location
Randall Pyke
May 10 – Aug 8, 2022: Mon, Wed, Fri, 12:30–1:20 p.m.
Burnaby
D101 May 10 – Aug 8, 2022: Wed, 2:30–3:20 p.m.
Burnaby
D102 May 10 – Aug 8, 2022: Wed, 3:30–4:20 p.m.
Burnaby
D103 May 10 – Aug 8, 2022: Thu, 10:30–11:20 a.m.
Burnaby
D104 May 10 – Aug 8, 2022: Thu, 11:30 a.m.–12:20 p.m.
Burnaby
D105 May 10 – Aug 8, 2022: Thu, 12:30–1:20 p.m.
Burnaby
Vijaykumar Singh
May 10 – Aug 8, 2022: Mon, Wed, Fri, 12:30–1:20 p.m.
Surrey
D201 May 10 – Aug 8, 2022: Thu, 12:30–1:20 p.m.
Surrey
D202 May 10 – Aug 8, 2022: Thu, 1:30–2:20 p.m.
Surrey
PHYS 132 - Physics Laboratory I (1) *

Introduction to experimental physics with an emphasis on measurement and experimental design. Includes elementary experiments in mechanics designed to support and enrich conceptual learning. Corequisite: PHYS 101 or 120 or 125. Students with credit for PHYS 140 may not take PHYS 132 for further credit. Quantitative.

PHYS 133 - Physics Laboratory II (1) *

Introduction to experimental physics with an emphasis on measurement and experimental design. Includes elementary experiments in electromagnetism and optics designed to support and enrich conceptual learning. Prerequisite: PHYS 132 or 140 or ENSC 120 (no substitutions), with a minimum grade of C-. Corequisite: PHYS 102 or 121 or 126. Students with credit for PHYS 141 may not take PHYS 133 for further credit. Quantitative.

Section Instructor Day/Time Location
Simin Bagheri Najmi
May 10 – Aug 8, 2022: Thu, 2:30–6:20 p.m.
Burnaby
PHYS 201 - Physics Undergraduate Seminar (1)

A seminar to expose students majoring in any Physics program to opportunities available with a physics degree. Seminar will include invited speakers, group discussions, and student presentations on topics including modern physics research, industrial physics, career opportunities, and communication and other professional skills. May be repeated once for credit. Graded as pass/fail (P/F). Prerequisite: PHYS 121 or PHYS 126 or PHYS 141, with a minimum grade of C-, or PHYS 102 with a minimum grade of B.

PHYS 211 - Intermediate Mechanics (3)

An intermediate mechanics course covering kinematics, dynamics, calculus of variations and Lagrange's equations, non-inertial reference frames, central forces and orbits, and rigid body motion. Prerequisite: MATH 251; MATH 232 or MATH 240; PHYS 255 or ENSC 380. All prerequisite courses require a minimum grade of C-. Recommended Corequisite: MATH 260 or MATH 310. Quantitative.

PHYS 233 - Physics Laboratory III (3)

Statistical data analysis, experimental design and scientific communication, studied in the context of experiments spanning a range of physical systems. Prerequisite: PHYS 133 or PHYS 141 or ENSC 280, with a minimum grade of C-. Recommended Prerequisite: CMPT 120. Quantitative.

PHYS 234 - Physics Laboratory IV (3)

Introduction to modern techniques in experimental physics, including computer-aided data acquisition, electronics, control theory, and statistical data analysis. Prerequisite: PHYS 233 and PHYS 255, with a minimum grade of C-. Students with credit for PHYS 231 may not take this course for further credit. Quantitative.

PHYS 255 - Vibrations and Waves (3)

The physics of vibrations and waves. Topics include periodic motion, including free and forced oscillations, coupled oscillators, normal modes, and waves in one and higher dimensions. Prerequisite: PHYS 126 or PHYS 121 or PHYS 141, with a minimum grade of C-, or PHYS 102 with a minimum grade of B. Corequisite: MATH 251; MATH 232 or MATH 240. Recommended Corequisite: MATH 260 or MATH 310. Quantitative.

PHYS 285 - Quantum I (3)

The concepts of quantum mechanics introduced through two-level systems and explored in a way that requires only familiarity with general concepts of linear algebra. Introduction to concepts in classical and quantum information theory, bits and qubits, quantum dynamics, quantum communication and cryptography, and quantum circuits. Prerequisite: Either MATH 232 or MATH 240, with a minimum grade of C-. Quantitative.

and one of

MATH 150 - Calculus I with Review (4)

Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Topics as for Math 151 with a more extensive review of functions, their properties and their graphs. Recommended for students with no previous knowledge of Calculus. In addition to regularly scheduled lectures, students enrolled in this course are encouraged to come for assistance to the Calculus Workshop (Burnaby), or Math Open Lab (Surrey). Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least B+, or MATH 100 with a grade of at least B-, or achieving a satisfactory grade on the Ά‘ΟγΤ°AV Calculus Readiness Test. Students with credit for either MATH 151, 154 or 157 may not take MATH 150 for further credit. Quantitative.

Section Instructor Day/Time Location
Seyyed Aliasghar Hosseini
May 10 – Aug 8, 2022: Mon, Wed, Fri, 1:30–2:20 p.m.
May 10 – Aug 8, 2022: Tue, 1:30–2:20 p.m.
Burnaby
Burnaby
OP01 TBD
MATH 151 - Calculus I (3)

Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Logarithmic and exponential functions, trigonometric functions, inverse functions. Limits, continuity, and derivatives. Techniques of differentiation, including logarithmic and implicit differentiation. The Mean Value Theorem. Applications of differentiation including extrema, curve sketching, Newton's method. Introduction to modeling with differential equations. Polar coordinates, parametric curves. Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least A, or MATH 100 with a grade of at least B, or achieving a satisfactory grade on the Ά‘ΟγΤ°AV Calculus Readiness Test. Students with credit for either MATH 150, 154 or 157 may not take MATH 151 for further credit. Quantitative.

and one of

MATH 232 - Applied Linear Algebra (3)

Linear equations, matrices, determinants. Introduction to vector spaces and linear transformations and bases. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. An emphasis on applications involving matrix and vector calculations. Prerequisite: MATH 150 or 151 or MACM 101, with a minimum grade of C-; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 240 may not take this course for further credit. Quantitative.

Section Instructor Day/Time Location
Nadish de Silva
May 10 – Aug 8, 2022: Mon, Wed, Fri, 1:30–2:20 p.m.
Surrey
OP01 TBD
MATH 240 - Algebra I: Linear Algebra (3)

Linear equations, matrices, determinants. Real and abstract vector spaces, subspaces and linear transformations; basis and change of basis. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. Applications. Subject is presented with an abstract emphasis and includes proofs of the basic theorems. Prerequisite: MATH 150 or 151 or MACM 101, with a minimum grade of C-; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 232 cannot take this course for further credit. Quantitative.

Section Instructor Day/Time Location
Hanmeng Zhan
May 10 – Aug 8, 2022: Mon, Wed, Fri, 11:30 a.m.–12:20 p.m.
Burnaby
D101 May 10 – Aug 8, 2022: Thu, 9:30–10:20 a.m.
Burnaby
D102 May 10 – Aug 8, 2022: Thu, 2:30–3:20 p.m.
Burnaby
D103 May 10 – Aug 8, 2022: Thu, 3:30–4:20 p.m.
Burnaby

and one of

PHYS 120 - Mechanics and Modern Physics (3)

A general calculus-based introduction to mechanics. Topics include translational and rotational motion, momentum, energy, gravitation, and selected topics in modern physics. Prerequisite: BC Principles of Physics 12 or PHYS 100 or equivalent, with a minimum grade of C-. This prerequisite may be waived, at the discretion of the department, as determined by the student's performance on a regularly scheduled PHYS 100 final exam. Please consult the physics advisor for further details. Corequisite: MATH 150 or 151 or 154. Recommended Corequisite: PHYS 132. Students with credit for PHYS 101, 125 or 140 may not take this course for further credit. Quantitative/Breadth-Science.

PHYS 125 - Mechanics and Special Relativity (3) +

An enriched course in mechanics for students with good preparation in physics and mathematics. Special relativity and classical topics such as translational and rotational dynamics and conservation laws will be given a much more sophisticated treatment than in our other first-year courses. Prerequisite: Permission of the department. Corequisite: MATH 151. Recommended Corequisite: PHYS 132. Students with credit for PHYS 101, 120 or PHYS 140 may not take PHYS 125 for further credit. Quantitative.

PHYS 140 - Studio Physics - Mechanics and Modern Physics (4) *

A general calculus-based introduction to mechanics taught in an integrated lecture-laboratory environment. Topics include translational and rotational motion, momentum, energy, gravitation, and selected topics in modern physics. Prerequisite: BC Principles of Physics 12, or PHYS 100 or equivalent, with a minimum grade of C-. Corequisite: MATH 150 or 151 or 154. Students with credit for PHYS 125 or 120 or 101 may not take this course for further credit. Quantitative/Breadth-Science.

and one of

PHYS 121 - Optics, Electricity and Magnetism (3)

A general calculus-based introduction to electricity, magnetism and optics. Topics include electricity, magnetism, simple circuits, optics and topics from applied physics. Prerequisite: PHYS 120 or 125 or 140, with a minimum grade of C-, or PHYS 101 with a minimum grade of B. Corequisite: MATH 152 or 155. Recommended Corequisite: PHYS 133. Students with credit for PHYS 102, 126 or 141 may not take this course for further credit. Quantitative/Breadth-Science.

Section Instructor Day/Time Location
Michael Chen
May 10 – Aug 8, 2022: Mon, Wed, Fri, 9:30–10:20 a.m.
Burnaby
D101 May 10 – Aug 8, 2022: Tue, 1:30–2:20 p.m.
Burnaby
D102 May 10 – Aug 8, 2022: Tue, 2:30–3:20 p.m.
Burnaby
D103 May 10 – Aug 8, 2022: Tue, 3:30–4:20 p.m.
Burnaby
D104 May 10 – Aug 8, 2022: Wed, 1:30–2:20 p.m.
Burnaby
D105 May 10 – Aug 8, 2022: Wed, 2:30–3:20 p.m.
Burnaby
D106 May 10 – Aug 8, 2022: Wed, 3:30–4:20 p.m.
Burnaby
D107 May 10 – Aug 8, 2022: Thu, 1:30–2:20 p.m.
Burnaby
D108 May 10 – Aug 8, 2022: Thu, 2:30–3:20 p.m.
Burnaby
PHYS 126 - Electricity, Magnetism and Light (3) +

An enriched course in electromagnetism for students with good preparation in physics and mathematics. Classical topics such as waves, electricity and magnetism, as well as wave particle duality and the birth of Quantum Mechanics, will be given a much more sophisticated treatment than in our other first year courses. Prerequisite: PHYS 125 or permission of the department. Corequisite: MATH 152. Recommended Corequisite: PHYS 133. Students with credit in PHYS 102, 121 or 141 may not take this course for further credit. Quantitative.

PHYS 141 - Studio Physics - Optics, Electricity and Magnetism (4) *

A general calculus-based introduction to electricity, magnetism and optics taught in an integrated lecture-laboratory environment. Topics include electricity, magnetism, simple circuits, optics and topics from applied physics. Prerequisite: PHYS 120 or PHYS 125 or PHYS 140, with a minimum grade of C-, or PHYS 101 with a minimum grade of B. Corequisite: MATH 152 or MATH 155. Students with credit for PHYS 126 or 121 or 102 may not take this course for further credit. Quantitative/Breadth-Science.

and 9 units chosen from

MACM 101 - Discrete Mathematics I (3)

Introduction to counting, induction, automata theory, formal reasoning, modular arithmetic. Prerequisite: BC Math 12 (or equivalent), or any of MATH 100, 150, 151, 154, 157. Quantitative/Breadth-Science.

Section Instructor Day/Time Location
Brad Bart
May 10 – Aug 8, 2022: Mon, 4:30–6:20 p.m.
May 10 – Aug 8, 2022: Wed, 4:30–5:20 p.m.
Burnaby
Burnaby
E101 May 10 – Aug 8, 2022: Thu, 2:30–3:20 p.m.
Burnaby
E102 May 10 – Aug 8, 2022: Thu, 2:30–3:20 p.m.
Burnaby
E103 May 10 – Aug 8, 2022: Thu, 3:30–4:20 p.m.
Burnaby
E104 May 10 – Aug 8, 2022: Thu, 3:30–4:20 p.m.
Burnaby
E105 May 10 – Aug 8, 2022: Thu, 4:30–5:20 p.m.
Burnaby
E106 May 10 – Aug 8, 2022: Thu, 4:30–5:20 p.m.
Burnaby
E107 May 10 – Aug 8, 2022: Thu, 5:30–6:20 p.m.
Burnaby
E108 May 10 – Aug 8, 2022: Thu, 5:30–6:20 p.m.
Burnaby
CMPT 120 - Introduction to Computing Science and Programming I (3) **

An elementary introduction to computing science and computer programming, suitable for students with little or no programming background. Students will learn fundamental concepts and terminology of computing science, acquire elementary skills for programming in a high-level language, e.g. Python. The students will be exposed to diverse fields within, and applications of computing science. Topics will include: pseudocode; data types and control structures; fundamental algorithms; recursion; reading and writing files; measuring performance of algorithms; debugging tools; basic terminal navigation using shell commands. Treatment is informal and programming is presented as a problem-solving tool. Prerequisite: BC Math 12 or equivalent is recommended. Students with credit for CMPT 102, 128, 130 or 166 may not take this course for further credit. Students who have taken CMPT 125, 129, 130 or 135 first may not then take this course for further credit. Quantitative/Breadth-Science.

Section Instructor Day/Time Location
Diana Cukierman
May 10 – Aug 8, 2022: Mon, Wed, Fri, 9:30–10:20 a.m.
Burnaby
Matthew Amy
May 10 – Aug 8, 2022: Mon, Wed, Fri, 12:30–1:20 p.m.
Burnaby
CMPT 125 - Introduction to Computing Science and Programming II (3)

A rigorous introduction to computing science and computer programming, suitable for students who already have some background in computing science and programming. Intended for students who will major in computing science or a related program. Topics include: memory management; fundamental algorithms; formally analyzing the running time of algorithms; abstract data types and elementary data structures; object-oriented programming and software design; specification and program correctness; reading and writing files; debugging tools; shell commands. Prerequisite: CMPT 120 or CMPT 130, with a minimum grade of C-. Students with credit for CMPT 126, 129, 135 or CMPT 200 or higher may not take this course for further credit. Quantitative.

Section Instructor Day/Time Location
Anne Lavergne
May 10 – Aug 8, 2022: Mon, Wed, Fri, 10:30–11:20 a.m.
Burnaby
D101 May 10 – Aug 8, 2022: Tue, 1:30–2:20 p.m.
Burnaby
D102 May 10 – Aug 8, 2022: Tue, 1:30–2:20 p.m.
Burnaby
D103 May 10 – Aug 8, 2022: Tue, 2:30–3:20 p.m.
Burnaby
D104 May 10 – Aug 8, 2022: Tue, 2:30–3:20 p.m.
Burnaby
D105 May 10 – Aug 8, 2022: Tue, 3:30–4:20 p.m.
Burnaby
D106 May 10 – Aug 8, 2022: Tue, 3:30–4:20 p.m.
Burnaby
D107 May 10 – Aug 8, 2022: Tue, 4:30–5:20 p.m.
Burnaby
D108 May 10 – Aug 8, 2022: Tue, 4:30–5:20 p.m.
Burnaby
CMPT 128 - Introduction to Computing Science and Programming for Engineers (3)

An introduction to computing science and computer programming, suitable for students wishing to major in Engineering Science or a related program. This course introduces basic computing science concepts, and fundamentals of object oriented programming. Topics include: fundamental algorithms and problem solving; abstract data types and elementary data structures; basic object-oriented programming and software design; elements of empirical and theoretical algorithmics; computation and computability; specification and program correctness; and history of computing science. The course will use a programming language commonly used in Engineering Science. Prerequisite: BC Math 12 (or equivalent, or any of MATH 100, 150, 151, 154, or 157, with a minimum grade of C-). Students with credit for CMPT 102, 120, 130 or 166 may not take this course for further credit. Students who have taken CMPT 125, 129, 135, or CMPT 200 or higher first may not then take this course for further credit. Quantitative/Breadth-Science.

CMPT 129 - Introduction to Computing Science and Programming for Mathematics and Statistics (3)

A second course in computing science and programming intended for students studying mathematics, statistics or actuarial science and suitable for students who already have some background in computing science and programming. Topics include: a review of the basic elements of programming: use and implementation of elementary data structures and algorithms; fundamental algorithms and problem solving; basic object-oriented programming and software design; computation and computability and specification and program correctness. Prerequisite: CMPT 102 or CMPT 120, with a minimum grade of C-. Students with credit for CMPT 125 or 135 may not take this course for further credit. Quantitative.

or any 200-level CMPT course

* students with credit for PHYS 140 and 141 are not required to complete PHYS 132 or PHYS 133

** students with computing experience may be able to test out of CMPT 120

+ recommended

Upper Division Requirements

Complete all of

PHYS 313 - Special Relativity (3)

A detailed presentation of Einstein’s Special Theory of Relativity and how it revolutionized physics. Topics covered include: constancy of the speed of light, Lorentz transformations, time dilation, length contraction, relativistic paradoxes, space-time diagrams, relativistic particle kinematics and dynamics, electromagnetism as a relativistic phenomenon, and an introduction to general relativity. Prerequisite: PHYS 121 or 126 or 141 (or PHYS 102 with a minimum grade of B); MATH 232 or 240, with a minimum grade of C-. Quantitative.

PHYS 321 - Intermediate Electricity and Magnetism (3)

Development and application of Maxwell's equations in vector differential form. Notation and theorems of vector calculus; electric charge, fields, potentials, capacitance and field energy; conductors; methods for solving electrostatic problems; electric fields in matter; electrical current and the magnetic field; Ampere's law and the vector potential; magnetic fields in matter; electromotive force, electrical resistance, Faraday's law and inductance; Maxwell's correction to Ampere's law and electromagnetic waves. Prerequisite: PHYS 121 or PHYS 126 or PHYS 141 (or PHYS 102 with a minimum grade of B); MATH 252 or MATH 254; MATH 260 or MATH 310. All prerequisite courses require a minimum grade of C-, unless specified. Quantitative.

PHYS 326 - Electronics and Instrumentation (4)

Circuits and circuit theory, passive and active devices, amplifiers, feedback, modern measurement techniques and instrumentation. Prerequisite: PHYS 234 with a minimum grade of C-. Quantitative.

PHYS 332W - Advanced Physics Laboratory I (4)

Experiments investigating a range of physical phenomena such as Brownian motion, molecular order, chaotic dynamics, Doppler broadening of stellar spectra, and biophysical forces using techniques such as interference, optical trapping, and spectroscopy. Attention will also be given to more general skills, including experimental design, operating and troubleshooting experimental equipment, modeling of experimental results, data analysis, and the presentation of experimental results. Biological Physics students will do a selected set of experiments. Prerequisite: PHYS 233; PHYS 285 or CHEM 260, both with a minimum grade of C-. Writing/Quantitative.

PHYS 344 - Thermal Physics (3)

Heat, temperature, heat transfer, kinetic theory, laws of thermodynamics, entropy, heat engines, applications of thermodynamics to special systems, phase transitions. Prerequisite: PHYS 121 or PHYS 126 or PHYS 141; MATH 251; both with a minimum grade of C-. Quantitative.

PHYS 385 - Quantum II (3)

Stern-Gerlach experiments and the structure of quantum mechanics; operators; angular momentum and spin; SchrΓΆdinger equation and examples for time evolution; systems of two spin-Β½ particles; density operators; wave mechanics in one dimension including the double slit experiment, particle in a box, scattering in one dimension, tunnelling; one-dimensional harmonic oscillator; coherent states. Prerequisite: MATH 252 or MATH 254; MATH 260; PHYS 255; PHYS 285 or ENSC 380 or CHEM 260. All prerequisite courses require a minimum grade of C-. Recommended Prerequisite: PHYS 211. Quantitative.

PHYS 421 - Electromagnetic Waves (3)

A continuation of PHYS 321: properties of electromagnetic waves and their interaction with matter. Transmission lines and waveguides; antennas, radiation and scattering; propagation of electromagnetic waves in free space and in matter; reflection and refraction at boundaries; polarization, interference and diffraction. Prerequisite: PHYS 321 (no substitution); PHYS 255 or ENSC 380, both with a minimum grade of C-. Quantitative.

and 10 units selected from

CHEM 340 - Materials Chemistry (3)

Bonding in solid state materials. Introduction to symmetry and its applications in materials science. Structure and physical properties of solid state materials. Prerequisite: Completion of 60 units in a science or applied science program, including first year chemistry, physics and calculus. CHEM 230 is strongly recommended. Quantitative.

ENSC 426 - High Frequency Electronics (4)

Transmission lines and waveguides, microwave devices, travelling wave devices. An introduction to the theory of radiation, antennae and wave propagation, and microwave scattering theory. The design of complete communication systems incorporating microwave, optical and satellite channels. Laboratory work is included in this course.Physics students with credit for PHYS 326 and PHYS 421 may take this course with permission of the instructor. Prerequisite: Completion of 80 units including (ENSC 416 or PHYS 421) and ENSC 325, with a minimum grade of C-.

Section Instructor Day/Time Location
May 10 – Aug 8, 2022: Tue, Thu, 2:30–4:20 p.m.
Burnaby
D101 TBD
LA01 TBD
ENSC 495 - Introduction to Microelectronic Fabrication (4) **

Lectures provide the theory of integrated circuit fabrication. Students fabricate diodes, transistors and test structures in the laboratory. Topics: clean room practice, thermal oxidation and diffusion, photolithography, thin film deposition, etching, ion implantation, packaging, CMOS and bipolar processes. Prerequisite: ENSC 225 or ENSC 226 or MSE 251 or PHYS 365, with a minimum grade of C- and permission of the instructor and a minimum of 80 units. Enrollment in this course is by application only.

MATH 462 - Fluid Dynamics (3)

Incompressible fluid flow phenomena: kinematics and equations of motion, viscous flow and boundary layer theory, potential flow, water waves. Aerodynamics. Prerequisite: One of MATH 314, MATH 418, PHYS 384, with a minimum grade of C-. An alternative to the above prerequisite is both of MATH 251 and (MATH 260 or MATH 310), both with grades of at least B+. Quantitative.

Section Instructor Day/Time Location
David Muraki
May 10 – Aug 8, 2022: Mon, 10:30–11:20 a.m.
May 10 – Aug 8, 2022: Wed, 9:30–11:20 a.m.
Burnaby
Burnaby
NUSC 341 - Introduction to Radiochemistry (3)

Brief description of the nucleus and its decays and reactions; interaction of radiation with matter; nuclear instrumentation; radioisotopes in chemistry; activation analysis and related analytical techniques; other applications of nuclear techniques; nuclear reactors and nuclear fusion. Prerequisite: Completion of 60 units in a science program, including first year calculus, chemistry and physics. Quantitative.

NUSC 346 - Radiochemistry Laboratory (3)

Introduction to the techniques of radiochemistry; proportional and Geiger counters; sample preparations and half-life measurement; synthesis and separation of labelled compounds; beta and gamma-ray spectroscopy. Prerequisite: NUSC 341 with a minimum grade of C-. Quantitative.

PHYS 365 - Semiconductor Device Physics (3)

Structure and properties of semiconductors, semiconductor theory, theory and operation of semiconductor devices, semiconductor device technology. Corequisite: PHYS 285; PHYS 321; both with a minimum grade of C-, or permission from the department. Students with credit for ENSC 224 or ENSC 324 may not take PHYS 365 for further credit. Quantitative.

PHYS 391 - Introduction to Observational Astrophysics (3)

Hands-on introduction to observational astronomy including the astrophysics of stellar clusters, galaxies, nebulae, and the expanding universe; calculation of the conditions for observing target objects; and analysis of photometric and spectroscopic data with Python. Data will be acquired using the Trottier Observatory, weather permitting, otherwise, archival data will be used. Prerequisite: PHYS 233 or equivalent. Recommended Prerequisite: CMPT 120 or equivalent.

PHYS 395 - Computational Physics (3) +

Computer-based approaches to solving complex physical problems. Includes topics such as Monte-Carlo and molecular dynamics techniques applied to thermal properties of materials; dynamical behavior of systems, including chaotic motion; methods for ground state determination and optimization, including Newton-Raphson, simulated annealing, neural nets, and genetic algorithms: symplectic methods; and analysis of numerical data. Prerequisite: MATH 260 or MATH 310; PHYS 255; CMPT 120 or equivalent. All prerequisite courses require a minimum grade of C-. Quantitative.

or MACM 316 - Numerical Analysis I (3)

A presentation of the problems commonly arising in numerical analysis and scientific computing and the basic methods for their solutions. Prerequisite: MATH 152 or 155 or 158, and MATH 232 or 240, and computing experience. Quantitative.

Section Instructor Day/Time Location
JF Williams
May 10 – Aug 8, 2022: Mon, Wed, Fri, 10:30–11:20 a.m.
Burnaby
D101 May 10 – Aug 8, 2022: Mon, 2:30–3:20 p.m.
Burnaby
D102 May 10 – Aug 8, 2022: Mon, 3:30–4:20 p.m.
Burnaby
D103 May 10 – Aug 8, 2022: Mon, 4:30–5:20 p.m.
Burnaby
D104 May 10 – Aug 8, 2022: Tue, 11:30 a.m.–12:20 p.m.
Burnaby
D105 May 10 – Aug 8, 2022: Tue, 12:30–1:20 p.m.
Burnaby
D106 May 10 – Aug 8, 2022: Tue, 1:30–2:20 p.m.
Burnaby
D107 May 10 – Aug 8, 2022: Mon, 5:30–6:20 p.m.
Burnaby
D108 May 10 – Aug 8, 2022: Tue, 10:30–11:20 a.m.
Burnaby
PHYS 416 - Introduction to Quantum Information Science (3)

Includes topics such as qubits, density matrices, mixed states, entanglement, basic quantum algorithms, quantum cryptography, computational models and complexity, introductory quantum error correction, and applications. Prerequisite: PHYS 385; PHYS 384 or both MATH 314 and MATH 419, or equivalent. All prerequisite courses require a minimum grade of C-. Quantitative.

PHYS 431 - Advanced Physics Laboratory II (4)

Advanced experiments in Physics. May include special projects. Prerequisite: PHYS 385 and PHYS 332W, both with a minimum grade of C-. Quantitative.

PHYS 455 - Modern Optics (3)

Optical physics, including geometrical and physical optics, waves in anisotropic media, coherence, image formation and Fourier optics, guided wave optics and selected advanced topics such as lasers, nonlinear optics, photonics and quantum optics. Prerequisite: PHYS 321 with a minimum grade of C-. Corequisite: PHYS 385. Quantitative.

PHYS 465 - Solid State Physics (3)

Crystal structure, lattice vibrations and thermal properties of solids, free electron model, band theory, and applications. Prerequisite: PHYS 385 or CHEM 364, with a minimum grade of C-. Quantitative.

** the prerequisite ENSC 222 can be replaced by PHYS 326

+ recommended

University Degree Requirements

Students must also satisfy University degree requirements for degree completion.

Writing, Quantitative, and Breadth Requirements

Students admitted to Ά‘ΟγΤ°AV beginning in the fall 2006 term must meet writing, quantitative and breadth requirements as part of any degree program they may undertake. See Writing, Quantitative, and Breadth Requirements for university-wide information.

WQB Graduation Requirements

A grade of C- or better is required to earn W, Q or B credit

Requirement

Units

Notes
W - Writing

6

Must include at least one upper division course, taken at Ά‘ΟγΤ°AV within the student’s major subject
Q - Quantitative

6

Q courses may be lower or upper division
B - Breadth

18

Designated Breadth Must be outside the student’s major subject, and may be lower or upper division
6 units Social Sciences: B-Soc
6 units Humanities: B-Hum
6 units Sciences: B-Sci

6

Additional Breadth 6 units outside the student’s major subject (may or may not be B-designated courses, and will likely help fulfil individual degree program requirements)

Students choosing to complete a joint major, joint honours, double major, two extended minors, an extended minor and a minor, or two minors may satisfy the breadth requirements (designated or not designated) with courses completed in either one or both program areas.

Μύ

Residency Requirements and Transfer Credit

  • At least half of the program's total units must be earned through Ά‘ΟγΤ°AV study.
  • At least two thirds of the program's total upper division units must be earned through Ά‘ΟγΤ°AV study.

Elective Courses

In addition to the courses listed above, students should consult an academic advisor to plan the remaining required elective courses.