STT - Deep Learning Systems in Engineering ENSC 413 (4)
Machine learning basics, generalization theory, training, validation, and testing. Introduction to artificial neural networks: feedforward, convolutional, recurrent networks. Types of layers in deep models. Architectural and memory calculations. Regularization and optimization. Hardware architectures for deep learning. The course culminates in a major project focusing on engineering applications of deep learning. Prerequisite: MATH 251, ENSC 280, ENSC 351, ENSC 380. Students who have taken ENSC 813 first may not then take this course for further credit.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Ivan Bajic |
Jan 3 – Apr 8, 2019: Tue, Thu, 2:30–4:20 p.m.
|
Burnaby |