Ά‘ΟγΤ°AV

Please note:

To view the current calendar go to

Ά‘ΟγΤ°AV Calendar | Summer 2018

Molecular Biology and Biochemistry Major

Bachelor of Science

The MBB major program provides a broad foundation in the life sciences from a biochemical, cellular, and molecular perspective. Flexibility in upper division course selection allows students to tailor the program to their own interests as well as meet the entry requirements for medical school and other professional and graduate programs.

Ά‘ΟγΤ°AV Requirements

Acceptance into and continuance in the program requires a minimum 2.5 cumulative grade point average (CGPA) upon completion of lower division required courses (not including the CMPT courses).

Secondary school students admitted via direct entry must achieve a 2.5 CGPA in all lower division required courses or be withdrawn from the program.

Students declaring the MBB major must have completed all required lower division courses with a CGPA of 2.5 in those courses.

Students may follow the requirements in effect when they were accepted into the program or students may take advantage of a new curriculum by changing requirement term at any time.

Prerequisite Course Grade

For a course to be accepted as fulfilling a prerequisite for any upper division MBB course, a student must have obtained a minimum grade of C unless otherwise noted. 

Program Requirements

Students complete a total of 120 units, including lower and upper division requirements, and enough elective courses to total 120. Of these 120 units, 44 units must be in upper division courses.

Lower Division Requirements

Students complete all of

BISC 101 - General Biology (4)

An introduction to the biochemical and physiological mechanisms of living organisms. Topics covered include cell structure and function, DNA replication and the flow of genetic information, enzyme function, metabolism and physiology of microorganisms, plants, and animals. Prerequisite: High school biology 12 (or equivalent) with a C grade or better, or BISC 100 with C- or better, or BISC 113 with C+ or better, or HSCI 100 with C+ or better. Breadth-Science.

Section Instructor Day/Time Location
Ivona Mladenovic
May 7 – Aug 3, 2018: Tue, 10:30–11:20 a.m.
May 7 – Aug 3, 2018: Thu, 9:30–11:20 a.m.
Burnaby
Burnaby
D101 May 7 – Aug 3, 2018: Tue, 11:30 a.m.–1:20 p.m.
May 7 – Aug 3, 2018: Thu, 11:30 a.m.–12:20 p.m.
Burnaby
Burnaby
D102 May 7 – Aug 3, 2018: Tue, 11:30 a.m.–1:20 p.m.
May 7 – Aug 3, 2018: Thu, 12:30–1:20 p.m.
Burnaby
Burnaby
D103 May 7 – Aug 3, 2018: Tue, 1:30–3:20 p.m.
May 7 – Aug 3, 2018: Thu, 1:30–2:20 p.m.
Burnaby
Burnaby
D105 May 7 – Aug 3, 2018: Tue, 11:30 a.m.–12:20 p.m.
May 7 – Aug 3, 2018: Thu, 11:30 a.m.–1:20 p.m.
Burnaby
Burnaby
D106 May 7 – Aug 3, 2018: Tue, 12:30–1:20 p.m.
May 7 – Aug 3, 2018: Thu, 11:30 a.m.–1:20 p.m.
Burnaby
Burnaby
D108 May 7 – Aug 3, 2018: Tue, 2:30–3:20 p.m.
May 7 – Aug 3, 2018: Thu, 1:30–3:20 p.m.
Burnaby
Burnaby
BISC 102 - General Biology (4)

Survey of the diversity of life, and its evolutionary history on earth. The student is introduced to the study of genetics, development, and evolution, giving an overview of how these processes interact to produce form and function. Also included are principles of behavior and ecological relationships of organisms to each other and their environment. Prerequisite: High school biology 12 (or equivalent) with a C grade or better, or BISC 100 with C- or better, or BISC 113 with C+ or better, or HSCI 100 with C+ or better. Breadth-Science.

Section Instructor Day/Time Location
Rolf Mathewes
Mika Mokkonen
May 7 – Aug 3, 2018: Tue, Thu, 12:30–1:20 p.m.
Burnaby
D101 May 7 – Aug 3, 2018: Tue, 9:30 a.m.–12:20 p.m.
May 7 – Aug 3, 2018: Thu, 9:30–10:20 a.m.
Burnaby
Burnaby
D102 May 7 – Aug 3, 2018: Tue, 9:30 a.m.–12:20 p.m.
May 7 – Aug 3, 2018: Thu, 10:30–11:20 a.m.
Burnaby
Burnaby
D103 May 7 – Aug 3, 2018: Tue, 1:30–4:20 p.m.
May 7 – Aug 3, 2018: Thu, 2:30–3:20 p.m.
Burnaby
Burnaby
D104 May 7 – Aug 3, 2018: Tue, 1:30–4:20 p.m.
May 7 – Aug 3, 2018: Thu, 3:30–4:20 p.m.
Burnaby
Burnaby
D105 May 7 – Aug 3, 2018: Tue, 9:30–10:20 a.m.
May 7 – Aug 3, 2018: Thu, 9:30 a.m.–12:20 p.m.
Burnaby
Burnaby
D106 May 7 – Aug 3, 2018: Tue, 10:30–11:20 a.m.
May 7 – Aug 3, 2018: Thu, 9:30 a.m.–12:20 p.m.
Burnaby
Burnaby
BISC 202 - Genetics (3)

Principles and concepts of the transmission of genetic information treated comparatively in man, animal, plant and microbe. Prerequisite: BISC 101 and 102 with a grade of C- or better.

Section Instructor Day/Time Location
Distance Education
Mika Mokkonen
May 7 – Aug 3, 2018: Mon, Wed, Fri, 9:30–10:20 a.m.
Burnaby
D101 May 7 – Aug 3, 2018: Mon, 2:30–3:20 p.m.
Burnaby
D102 May 7 – Aug 3, 2018: Mon, 2:30–3:20 p.m.
Burnaby
D103 May 7 – Aug 3, 2018: Mon, 3:30–4:20 p.m.
Burnaby
D105 May 7 – Aug 3, 2018: Wed, 8:30–9:20 a.m.
Burnaby
D106 May 7 – Aug 3, 2018: Fri, 8:30–9:20 a.m.
Burnaby
CHEM 121 - General Chemistry and Laboratory I (4)

Atomic and molecular structure; chemical bonding; thermochemistry; elements; periodic table; gases liquids, solids, and solutions. This course includes a laboratory component. Prerequisite: BC high school chemistry 12 or CHEM 109 or CHEM 111. Students may not count both CHEM 120 and 121 for credit. Quantitative/Breadth-Science.

Section Instructor Day/Time Location
May 7 – Aug 3, 2018: Mon, Wed, Fri, 10:30–11:20 a.m.
Burnaby
D101 May 7 – Aug 3, 2018: Tue, 9:30–10:20 a.m.
Burnaby
D102 May 7 – Aug 3, 2018: Tue, 10:30–11:20 a.m.

D103 May 7 – Aug 3, 2018: Tue, 1:30–2:20 p.m.
Burnaby
D104 May 7 – Aug 3, 2018: Tue, 2:30–3:20 p.m.
Burnaby
D105 May 7 – Aug 3, 2018: Fri, 9:30–10:20 a.m.
Burnaby
D106 May 7 – Aug 3, 2018: Fri, 11:30 a.m.–12:20 p.m.
Burnaby
D107 May 7 – Aug 3, 2018: Fri, 12:30–1:20 p.m.
Burnaby
D108 May 7 – Aug 3, 2018: Fri, 1:30–2:20 p.m.
Burnaby
James Zhou
May 7 – Aug 3, 2018: Tue, 10:30–11:20 a.m.
May 7 – Aug 3, 2018: Thu, 9:30–11:20 a.m.
Surrey
Surrey
D201 May 7 – Aug 3, 2018: Thu, 11:30 a.m.–12:20 p.m.
Surrey
D202 May 7 – Aug 3, 2018: Thu, 12:30–1:20 p.m.
Surrey
D203 May 7 – Aug 3, 2018: Thu, 1:30–2:20 p.m.
Surrey
LA04 May 7 – Aug 3, 2018: Wed, 1:30–5:20 p.m.
Burnaby
LA06 May 7 – Aug 3, 2018: Thu, 1:30–5:20 p.m.
Burnaby
LB04 May 7 – Aug 3, 2018: Wed, 1:30–5:20 p.m.
Burnaby
LB06 May 7 – Aug 3, 2018: Thu, 1:30–5:20 p.m.
Burnaby
LC01 May 7 – Aug 3, 2018: Tue, 1:30–5:20 p.m.
Surrey
LE01 TBD
LE02 TBD
CHEM 122 - General Chemistry II (2)

Chemical equilibria; electrochemistry; chemical thermodynamics; kinetics. Students who intend to take further laboratory courses in chemistry should take CHEM 122 concurrently with CHEM 126. Prerequisite: CHEM 121 or 120. Recommended: MATH 152 (or 155) and PHYS 121 (or 102) as a corequisite. Quantitative.

Section Instructor Day/Time Location
Hogan Yu
May 7 – Aug 3, 2018: Mon, Wed, Fri, 12:30–1:20 p.m.
Burnaby
D101 May 7 – Aug 3, 2018: Wed, 1:30–2:20 p.m.
Burnaby
D103 May 7 – Aug 3, 2018: Wed, 3:30–4:20 p.m.
Burnaby
D104 May 7 – Aug 3, 2018: Wed, 1:30–2:20 p.m.
Burnaby
D105 May 7 – Aug 3, 2018: Fri, 11:30 a.m.–12:20 p.m.
Burnaby
D106 May 7 – Aug 3, 2018: Fri, 1:30–2:20 p.m.
Burnaby
D107 May 7 – Aug 3, 2018: Fri, 2:30–3:20 p.m.
Burnaby
CHEM 126 - General Chemistry Laboratory II (2)

Experiments in chemical equilibrium, acids and bases, qualitative analysis, electrochemistry and chemical kinetics. Prerequisite: CHEM 121. Corequisite: CHEM 122. Quantitative.

Section Instructor Day/Time Location
Julie Lunniss
May 7 – Aug 3, 2018: Tue, 1:30–5:20 p.m.
Burnaby
Julie Lunniss
May 7 – Aug 3, 2018: Thu, 1:30–5:20 p.m.
Burnaby
CHEM 281 - Organic Chemistry I (4)

Structure, bonding, physical and chemical properties of simple organic compounds. Introduction to spectroscopy. Kinetics and mechanisms of organic reactions. This course includes a laboratory component. Prerequisite: CHEM 121. Corequisite: CHEM 122. Quantitative.

Section Instructor Day/Time Location
Nabyl Merbouh
May 7 – Aug 3, 2018: Mon, Wed, Fri, 10:30–11:20 a.m.
Burnaby
D101 May 7 – Aug 3, 2018: Wed, 9:30–10:20 a.m.
Burnaby
D102 May 7 – Aug 3, 2018: Wed, 11:30 a.m.–12:20 p.m.
Burnaby
D103 May 7 – Aug 3, 2018: Thu, 1:30–2:20 p.m.
Burnaby
D104 May 7 – Aug 3, 2018: Thu, 2:30–3:20 p.m.
Burnaby
D105 May 7 – Aug 3, 2018: Thu, 3:30–4:20 p.m.
Burnaby
D106 May 7 – Aug 3, 2018: Fri, 9:30–10:20 a.m.
Burnaby
D107 May 7 – Aug 3, 2018: Fri, 11:30 a.m.–12:20 p.m.
Burnaby
LA04 May 7 – Aug 3, 2018: Wed, 1:30–5:20 p.m.
Burnaby
LA05 May 7 – Aug 3, 2018: Thu, 8:30 a.m.–12:20 p.m.
Burnaby
LB04 May 7 – Aug 3, 2018: Wed, 1:30–5:20 p.m.
Burnaby
LB05 May 7 – Aug 3, 2018: Thu, 8:30 a.m.–12:20 p.m.
Burnaby
LE01 TBD
CHEM 286 - Organic Chemistry Laboratory II (2)

Laboratory work chosen to complement CHEM 282. Prerequisite: CHEM 281. Corequisite: CHEM 282 or 283. Quantitative.

Section Instructor Day/Time Location
May 7 – Aug 3, 2018: Wed, 1:30–5:20 p.m.
Burnaby
May 7 – Aug 3, 2018: Fri, 1:30–5:20 p.m.
Burnaby
MBB 222 - Molecular Biology and Biochemistry (3)

The structure, function and synthesis of proteins, RNA and DNA and their interrelated biological functions within the cell. An introduction to molecular biology techniques and methods of protein purification and analysis. Prerequisite: or Corequisite CHEM 281.

Section Instructor Day/Time Location
Irina Kovalyova
May 7 – Aug 3, 2018: Mon, Wed, 11:30 a.m.–12:20 p.m.
May 7 – Aug 3, 2018: Fri, 11:30 a.m.–12:20 p.m.
Burnaby
Burnaby
D102 May 7 – Aug 3, 2018: Mon, 9:30–10:20 a.m.
Burnaby
D104 May 7 – Aug 3, 2018: Wed, 12:30–1:20 p.m.
Burnaby
D105 May 7 – Aug 3, 2018: Tue, 9:30–10:20 a.m.
Burnaby
D106 May 7 – Aug 3, 2018: Wed, 10:30–11:20 a.m.
Burnaby
MBB 231 - Cellular Biology and Biochemistry (3)

A study of the molecular processes which underlie cell structure and function, integrating ultrastructural, physiological and biochemical approaches. Modern techniques used in the analysis of organelle and cell function are integral parts of the course. Prerequisite: MBB 222, BISC 101, CHEM 281 with grades of C- or better. Corequisite or Prerequisite: CHEM 282 or CHEM 283.

Section Instructor Day/Time Location
Ingrid Northwood
May 7 – Aug 3, 2018: Mon, Wed, Fri, 11:30 a.m.–12:20 p.m.
Burnaby
D101 May 7 – Aug 3, 2018: Wed, 12:30–1:20 p.m.
Burnaby
D102 May 7 – Aug 3, 2018: Tue, 9:30–10:20 a.m.
Burnaby
D103 May 7 – Aug 3, 2018: Wed, 10:30–11:20 a.m.
Burnaby
D104 May 7 – Aug 3, 2018: Tue, 12:30–1:20 p.m.
Burnaby
D105 May 7 – Aug 3, 2018: Wed, 1:30–2:20 p.m.
Burnaby
D106 May 7 – Aug 3, 2018: Wed, 2:30–3:20 p.m.
Burnaby

and both of

CHEM 215 - Introduction to Analytical Chemistry (4)

The principles of analytical chemistry and their practical application to solution samples. Titrimetric and electrochemical methods. Prerequisite: CHEM 122 and 126. Quantitative.

Section Instructor Day/Time Location
Paul Li
Dev Sharma
May 7 – Aug 3, 2018: Tue, 11:30 a.m.–1:20 p.m.
May 7 – Aug 3, 2018: Thu, 11:30 a.m.–12:20 p.m.
Burnaby
Burnaby
LA01 May 7 – Aug 3, 2018: Wed, 1:30–5:20 p.m.
Burnaby
LA02 May 7 – Aug 3, 2018: Thu, 1:30–5:20 p.m.
Burnaby
CHEM 282 - Organic Chemistry II (2)

Polyfunctional organic compounds and complex organic reactions. Introduction to natural products. Students with credit for CHEM 283 may not complete this course for further credit. Prerequisite: CHEM 281. Quantitative.

Section Instructor Day/Time Location
May 7 – Aug 3, 2018: Mon, 10:30–11:20 a.m.
May 7 – Aug 3, 2018: Wed, Fri, 10:30–11:20 a.m.
Burnaby
Burnaby
D101 May 7 – Aug 3, 2018: Wed, 1:30–2:20 p.m.
Burnaby
D102 May 7 – Aug 3, 2018: Wed, 2:30–3:20 p.m.
Burnaby
D103 May 7 – Aug 3, 2018: Thu, 9:30–10:20 a.m.
Burnaby
D104 May 7 – Aug 3, 2018: Fri, 9:30–10:20 a.m.
Burnaby

Or both of

CHEM 283 - Organic Chemistry IIb (3)

An advanced treatment of Organic Chemistry II. Topics include dienes and their reactivity, conjugation and aromaticity, aromatic substitution reactions, carboxylic acids and their derivatives, ketones and aldehydes, biological molecules, radical reactions, organometallic reagents, pericyclic reactions and planning multi-step synthesis. Prerequisite: CHEM 281. Students should not receive credit for both CHEM 282 and 283. Quantitative.

Section Instructor Day/Time Location
May 7 – Aug 3, 2018: Mon, 10:30–11:20 a.m.
May 7 – Aug 3, 2018: Wed, Fri, 10:30–11:20 a.m.
Burnaby
Burnaby
D103 May 7 – Aug 3, 2018: Fri, 9:30–10:20 a.m.
Burnaby
CHEM 380 - Chemical and Instrumental Methods of Identification of Organic Compounds (4)

Basic principles of infrared, ultraviolet, nuclear magnetic resonance and mass spectroscopy as applied to the identification of organic compounds. Prerequisite: CHEM 283 and 286, or permission of the department.

Section Instructor Day/Time Location
May 7 – Aug 3, 2018: Mon, Wed, Fri, 9:30–10:20 a.m.
Burnaby
LA01 May 7 – Aug 3, 2018: Mon, 1:30–5:20 p.m.
Burnaby

and one of

CMPT 102 - Introduction to Scientific Computer Programming (3)

A programming course which will provide the science student with a working knowledge of a scientific programming language and an introduction to computing concepts, structured programming, and modular design. The student will also gain knowledge in the use of programming environments including the use of numerical algorithm packages. Corequisite: MATH 152 or 155 (or 158). Students with credit for CMPT 120, 128, 130 or 166 may not take this course for further credit. Students who have taken CMPT 125, 129 or 135 first may not then take this course for further credit. Quantitative.

CMPT 110 - Programming in Visual Basic (3)

Topics will include user interfaces, objects, event-driven programming, program design, and file and data management. Prerequisite: BC mathematics 12 (or equivalent) or any 100 level MATH course. Students with credit for, or are currently enrolled in a computing science course at the 200 level or higher, or ITEC 240, 241 or 242 may not take this course for further credit. Quantitative.

CMPT 120 - Introduction to Computing Science and Programming I (3)

An elementary introduction to computing science and computer programming, suitable for students with little or no programming background. Students will learn fundamental concepts and terminology of computing science, acquire elementary skills for programming in a high-level language and be exposed to diverse fields within, and applications of computing science. Topics will include: pseudocode, data types and control structures, fundamental algorithms, computability and complexity, computer architecture, and history of computing science. Treatment is informal and programming is presented as a problem-solving tool. Prerequisite: BC Math 12 or equivalent is recommended. Students with credit for CMPT 102, 128, 130 or 166 may not take this course for further credit. Students who have taken CMPT 125, 129, 130 or 135 first may not then take this course for further credit. Quantitative/Breadth-Science.

Section Instructor Day/Time Location
May 7 – Aug 3, 2018: Mon, Wed, Fri, 9:30–10:20 a.m.
Burnaby
D101 May 7 – Aug 3, 2018: Wed, 10:30–11:20 a.m.
Burnaby
D102 May 7 – Aug 3, 2018: Wed, 10:30–11:20 a.m.
Burnaby
D103 May 7 – Aug 3, 2018: Wed, 11:30 a.m.–12:20 p.m.
Burnaby
D104 May 7 – Aug 3, 2018: Wed, 12:30–1:20 p.m.
Burnaby
D105 May 7 – Aug 3, 2018: Wed, 1:30–2:20 p.m.
Burnaby
D106 May 7 – Aug 3, 2018: Wed, 2:30–3:20 p.m.
Burnaby
D107 May 7 – Aug 3, 2018: Wed, 3:30–4:20 p.m.
Burnaby
D108 May 7 – Aug 3, 2018: Wed, 3:30–4:20 p.m.
Burnaby
CMPT 126 - Introduction to Computing Science and Programming (3)

A rigorous introduction to computing science and computer programming, suitable for students who already have substantial programming background. Topics include: fundamental algorithms and problem solving; abstract data types and elementary data structures; basic object-oriented programming and software design; elements of empirical and theoretical algorithmics; computation and computability; specification and program correctness; and history of computing science. Prerequisite: CMPT 120. Students with credit for CMPT 125, 128, 130, 135 or higher may not take CMPT 126 for further credit. Quantitative/Breadth-Science.

CMPT 130 - Introduction to Computer Programming I (3)

An introduction to computing science and computer programming, using a systems oriented language, such as C or C++. This course introduces basic computing science concepts. Topics will include: elementary data types, control structures, functions, arrays and strings, fundamental algorithms, computer organization and memory management. Prerequisite: BC Math 12 (or equivalent, or any of MATH 100, 150, 151, 154, or 157). Students with credit for CMPT 102, 120, 128 or 166 may not take this course for further credit. Students who have taken CMPT 125, 129 or 135 first may not then take this course for further credit. Quantitative/Breadth-Science.

and one of

MATH 150 - Calculus I with Review (4)

Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Topics as for Math 151 with a more extensive review of functions, their properties and their graphs. Recommended for students with no previous knowledge of Calculus. In addition to regularly scheduled lectures, students enrolled in this course are encouraged to come for assistance to the Calculus Workshop (Burnaby), or Math Open Lab (Surrey). Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least B+, or MATH 100 with a grade of at least B-, or achieving a satisfactory grade on the Ά‘ΟγΤ°AV Calculus Readiness Test. Students with credit for either MATH 151, 154 or 157 may not take MATH 150 for further credit. Quantitative.

Section Instructor Day/Time Location
Distance Education
Yusuf Tuncer
May 7 – Aug 3, 2018: Mon, Tue, Wed, Fri, 1:30–2:20 p.m.
Burnaby
OP01 TBD
MATH 151 - Calculus I (3)

Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Logarithmic and exponential functions, trigonometric functions, inverse functions. Limits, continuity, and derivatives. Techniques of differentiation, including logarithmic and implicit differentiation. The Mean Value Theorem. Applications of differentiation including extrema, curve sketching, Newton's method. Introduction to modeling with differential equations. Polar coordinates, parametric curves. Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least A, or MATH 100 with a grade of at least B, or achieving a satisfactory grade on the Ά‘ΟγΤ°AV Calculus Readiness Test. Students with credit for either MATH 150, 154 or 157 may not take MATH 151 for further credit. Quantitative.

MATH 154 - Calculus I for the Biological Sciences (3)

Designed for students specializing in the biological and medical sciences. Topics include: limits, growth rate and the derivative; elementary functions, optimization and approximation methods, and their applications; mathematical models of biological processes. Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least B, or MATH 100 with a grade of at least C, or achieving a satisfactory grade on the Ά‘ΟγΤ°AV Calculus Readiness Test. Students with credit for either MATH 150, 151 or 157 may not take MATH 154 for further credit. Quantitative.

and one of

MATH 152 - Calculus II (3)

Riemann sum, Fundamental Theorem of Calculus, definite, indefinite and improper integrals, approximate integration, integration techniques, applications of integration. First-order separable differential equations and growth models. Sequences and series, series tests, power series, convergence and applications of power series. Prerequisite: MATH 150 or 151; or MATH 154 or 157 with a grade of at least B. Students with credit for MATH 155 or 158 may not take this course for further credit. Quantitative.

Section Instructor Day/Time Location
Veselin Jungic
May 7 – Aug 3, 2018: Mon, Wed, Fri, 8:30–9:20 a.m.
Burnaby
OP01 TBD
MATH 155 - Calculus II for the Biological Sciences (3)

Designed for students specializing in the biological and medical sciences. Topics include: the integral, partial derivatives, differential equations, linear systems, and their applications; mathematical models of biological processes. Prerequisite: MATH 150, 151 or 154; or MATH 157 with a grade of at least B. Students with credit for MATH 152 or 158 may not take this course for further credit. Quantitative.

Section Instructor Day/Time Location
May 7 – Aug 3, 2018: Mon, Wed, Fri, 8:30–9:20 a.m.
Burnaby
OPO1 TBD

and one of

PHYS 101 - Physics for the Life Sciences I (3)

Force and motion, conservation of energy and momentum, fluids, properties of soft matter and thermal physics with applications taken from the life sciences. Prerequisite: BC Principles of Physics 12 or PHYS 100 or equivalent, with a minimum grade of C-. This prerequisite may be waived, at the discretion of the department, as determined by the student's performance on a regularly scheduled PHYS 100 final exam. Please consult the physics advisor for further details. Corequisite: MATH 150 or 151 or 154 or 157; BISC 100 or 101 or 102. Students with credit for PHYS 120, 125 or 140 may not take this course for further credit. Quantitative/Breadth-Science.

Section Instructor Day/Time Location
Michael Chen
May 7 – Aug 3, 2018: Mon, Wed, Fri, 12:30–1:20 p.m.
Burnaby
D101 May 7 – Aug 3, 2018: Wed, 1:30–2:20 p.m.
Burnaby
D102 May 7 – Aug 3, 2018: Wed, 2:30–3:20 p.m.
Burnaby
D103 May 7 – Aug 3, 2018: Wed, 3:30–4:20 p.m.
Burnaby
D104 May 7 – Aug 3, 2018: Wed, 4:30–5:20 p.m.
Burnaby
D105 May 7 – Aug 3, 2018: Thu, 12:30–1:20 p.m.
Burnaby
D106 May 7 – Aug 3, 2018: Thu, 1:30–2:20 p.m.
Burnaby
D107 May 7 – Aug 3, 2018: Thu, 2:30–3:20 p.m.
Burnaby
D108 May 7 – Aug 3, 2018: Thu, 3:30–4:20 p.m.
Burnaby
D109 May 7 – Aug 3, 2018: Fri, 1:30–2:20 p.m.
Burnaby
D110 May 7 – Aug 3, 2018: Fri, 2:30–3:20 p.m.
Burnaby
PHYS 120 - Mechanics and Modern Physics (3)

A general calculus-based introduction to mechanics. Topics include translational and rotational motion, momentum, energy, gravitation, and selected topics in modern physics. Prerequisite: BC Principles of Physics 12 or PHYS 100 or equivalent, with a minimum grade of C-. This prerequisite may be waived, at the discretion of the department, as determined by the student's performance on a regularly scheduled PHYS 100 final exam. Please consult the physics advisor for further details. Corequisite: MATH 150 or 151 or 154 must precede or be taken concurrently. Students with credit for PHYS 101, 125 or 140 may not take this course for further credit. Quantitative/Breadth-Science.

PHYS 125 - Mechanics and Special Relativity (3)

An enriched course in mechanics for students with good preparation in physics and mathematics. Special relativity and classical topics such as translational and rotational dynamics and conservation laws will be given a much more sophisticated treatment than in our other first-year courses. Prerequisite: Permission of the department. Co-requisite: MATH 125 or MATH 151. Students with credit for PHYS 101, 120 or PHYS 140 may not take PHYS 125 for further credit. Quantitative.

PHYS 140 - Studio Physics - Mechanics and Modern Physics (4)

A general calculus-based introduction to mechanics taught in an integrated lecture-laboratory environment. Topics include translational and rotational motion, momentum, energy, gravitation, and selected topics in modern physics. Prerequisite: BC Principles of Physics 12, or PHYS 100 or equivalent, with a minimum grade of C-. Corequisite: MATH 150 or 151 or 154 must precede or be taken concurrently. Students with credit for PHYS 125 or 120 or 101 may not take this course for further credit. Quantitative/Breadth-Science.

and one of

PHYS 102 - Physics for the Life Sciences II (3)

Waves and optics; electricity and magnetism; modern physics emphasizing radioactivity, with applications taken from the life sciences. Prerequisite: PHYS 101 or 120 or 125 or 140 and MATH 154 or 150 or 151 or 157, all with a minimum grade of C-. Corequisite: BISC 100 or 101 or 102. Recommended Corequisites: MATH 152, 155 or 158, PHYS 130. Students with credit for PHYS 121, 126, or 141 may not take this course for further credit. Quantitative/Breadth-Science.

Section Instructor Day/Time Location
Daria Ahrensmeier
May 7 – Aug 3, 2018: Mon, Wed, Fri, 9:30–10:20 a.m.
Burnaby
D101 May 7 – Aug 3, 2018: Wed, 12:30–1:20 p.m.
Burnaby
D102 May 7 – Aug 3, 2018: Wed, 1:30–2:20 p.m.
Burnaby
D103 May 7 – Aug 3, 2018: Wed, 2:30–3:20 p.m.
Burnaby
D106 May 7 – Aug 3, 2018: Thu, 12:30–1:20 p.m.
Burnaby
D107 May 7 – Aug 3, 2018: Thu, 1:30–2:20 p.m.
Burnaby
D110 May 7 – Aug 3, 2018: Fri, 1:30–2:20 p.m.
Burnaby
OP01 May 7 – Aug 3, 2018: Thu, 3:30–5:20 p.m.
Burnaby
PHYS 121 - Optics, Electricity and Magnetism (3)

A general calculus-based introduction to electricity, magnetism and optics. Topics include electricity, magnetism, simple circuits, optics and topics from applied physics. Prerequisite: PHYS 120 or 125 or 140 (or PHYS 101 with a grade of A or B). Corequisite: MATH 152 or 155 must precede or be taken concurrently. Students with credit for PHYS 102, 126 or 141 may not take this course for further credit. Quantitative/Breadth-Science.

Section Instructor Day/Time Location
Michael Chen
May 7 – Aug 3, 2018: Mon, Fri, 9:30–10:20 a.m.
May 7 – Aug 3, 2018: Wed, 9:30–10:20 a.m.
Burnaby
Burnaby
D101 May 7 – Aug 3, 2018: Wed, 12:30–1:20 p.m.
Burnaby
D102 May 7 – Aug 3, 2018: Wed, 1:30–2:20 p.m.
Burnaby
D103 May 7 – Aug 3, 2018: Wed, 2:30–3:20 p.m.
Burnaby
D104 May 7 – Aug 3, 2018: Wed, 3:30–4:20 p.m.
Burnaby
D105 May 7 – Aug 3, 2018: Thu, 1:30–2:20 p.m.
Burnaby
D106 May 7 – Aug 3, 2018: Thu, 2:30–3:20 p.m.
Burnaby
PHYS 126 - Electricity, Magnetism and Light (3)

An enriched course in electromagnetism for students with good preparation in physics and mathematics. Classical topics such as waves, electricity and magnetism, as well as wave particle duality and the birth of Quantum Mechanics, will be given a much more sophisticated treatment than in our other first year courses. Prerequisite: PHYS 125 and permission of the department. Co-requisite: MATH 126 or MATH 152. Students with credit in PHYS 102, 121 or 141 may not take this course for further credit. Quantitative.

PHYS 141 - Studio Physics - Optics, Electricity and Magnetism (4)

A general calculus-based introduction to electricity, magnetism and optics taught in an integrated lecture-laboratory environment. Topics include electricity, magnetism, simple circuits, optics and topics from applied physics. Prerequisite: PHYS 120 or PHYS 125 or PHYS 140, with a minimum grade of C- (or PHYS 101 with a minimum grade of B). Corequisite: MATH 152 or 155 must precede or be taken concurrently. Students with credit for PHYS 126 or 121 or 102 may not take this course for further credit. Quantitative/Breadth-Science.

and one of

STAT 201 - Statistics for the Life Sciences (3)

Research methodology and associated statistical analysis techniques for students with training in the life sciences. Intended to be particularly accessible to students who are not specializing in Statistics. Prerequisite: Recommended: 30 units. Students cannot obtain credit for STAT 201 if they already have credit for - or are taking concurrently - STAT 101, 203, 205, 285, or any upper division STAT course. Quantitative.

Section Instructor Day/Time Location
Distance Education
Rachel Altman
May 7 – Aug 3, 2018: Mon, Fri, 2:30–3:20 p.m.
May 7 – Aug 3, 2018: Wed, 2:30–3:20 p.m.
Burnaby
Burnaby
OP01 TBD
STAT 270 - Introduction to Probability and Statistics (3)

Basic laws of probability, sample distributions. Introduction to statistical inference and applications. Prerequisite: or Corequisite: MATH 152 or 155 or 158. Students wishing an intuitive appreciation of a broad range of statistical strategies may wish to take STAT 100 first. Quantitative.

Section Instructor Day/Time Location
Distance Education
Boxin Tang
May 7 – Aug 3, 2018: Wed, 11:30 a.m.–12:20 p.m.
May 7 – Aug 3, 2018: Fri, 10:30 a.m.–12:20 p.m.
Burnaby
Burnaby
OP01 TBD

Upper Division Requirements

Students complete all of

MBB 308 - Molecular Biology Laboratory (3)

Modern molecular biological and recombinant nucleic acid methods will be covered. Examples are DNA and RNA isolation, plasmid preparation, restriction enzyme digestion, DNA cloning and polymerase chain reaction. Prerequisite: MBB 331 with a minimum grade of C-. Students with credit for BISC 357 may not take this course for further credit.

Section Instructor Day/Time Location
Jiarui Li
May 7 – Aug 3, 2018: Mon, 2:30–4:20 p.m.
Burnaby
D101 May 7 – Aug 3, 2018: Tue, 1:30–5:20 p.m.
Burnaby
D102 May 7 – Aug 3, 2018: Wed, 1:30–5:20 p.m.
Burnaby
D103 May 7 – Aug 3, 2018: Thu, 1:30–5:20 p.m.
Burnaby
MBB 309W - Biochemistry Laboratory (4)

Contemporary techniques in biochemistry including protein purification, immunochemical methods, and lipid characterization. Prerequisite: MBB 231, with a minimum grade of C. Recommended: CHEM 215 and CHEM 286 precede MBB 309W. Writing.

MBB 321 - Intermediary Metabolism (3)

The enzymes and intermediates of major catabolic and anabolic pathways. Their regulation and integration in health and disease states. Prerequisite: MBB 231, with a minimum grade of C.

Section Instructor Day/Time Location
Edgar Young
May 7 – Aug 3, 2018: Mon, Wed, Fri, 10:30–11:20 a.m.
Burnaby
D101 May 7 – Aug 3, 2018: Mon, 11:30 a.m.–12:20 p.m.
Burnaby
D102 May 7 – Aug 3, 2018: Mon, 12:30–1:20 p.m.
Burnaby
D104 May 7 – Aug 3, 2018: Wed, 11:30 a.m.–12:20 p.m.
Burnaby
MBB 322 - Molecular Physiology (3)

Biochemical and molecular aspects of cellular function, interactions and communication including cell cycle, apoptosis, cancer, immune system, neuronal transmission and the signal transduction pathways that integrate them. Prerequisite: MBB 231, with a minimum grade of C.

MBB 331 - Molecular Biology (3)

The study of DNA and RNA in relation to gene structure and expression: DNA replication and the regulation of gene expression in bacteria and higher organisms. Introduction to recombinant DNA and cloning theory; natural vector structures and recombinant vector construction. Prerequisite: MBB 231, and BISC 202, with a minimum grade of C.

Section Instructor Day/Time Location
Jiarui Li
May 7 – Aug 3, 2018: Tue, Thu, 10:30 a.m.–12:20 p.m.
Burnaby
D101 May 7 – Aug 3, 2018: Mon, 10:30–11:20 a.m.
Burnaby
D102 May 7 – Aug 3, 2018: Mon, 11:30 a.m.–12:20 p.m.
Burnaby
D104 May 7 – Aug 3, 2018: Tue, 12:30–1:20 p.m.
Burnaby

and a minimum of five courses chosen from the following list. There is no upper limit on the quantity in this list that can be completed.

HSCI 442 - Immunology Laboratory (4)

Laboratory methods in immunology. Focus on the vertebrate immune system and the molecular and cellular principles underlying immune recognition. Experimental methods designed to combine serology, biochemistry, molecular biology, cell biology and genetics as a basis for understanding immunological aspects of health and disease. Prerequisite: HSCI or MBB 426, and one of MBB 308, BISC 303, BISC 357, or MBB 309W.

MBB 323 - Introduction to Physical Biochemistry (3)

Introduction to physical biochemistry including thermodynamics, spectroscopic principles and applications, and molecular transport and interactions. The physical properties and structure determination of biomolecules will be emphasized. Prerequisite: MATH 152 (or 155), PHYS 121 (or 102, or 126, or 141), CHEM 122 (or 102), MBB 222 with a minimum grade of C.

MBB 324 - Protein Biochemistry (3)

An exploration of the fundamental aspects of proteins; their chemical and physical nature, their synthesis, stability and turnover, as well as their structure and function. Methods of protein analysis and structure determination will be presented. Prerequisite: MBB 222 with a minimum grade of C.

MBB 342 - Introductory Genomics and Bioinformatics (3)

Major topics in genomics and bioinformatics, with integrated discussion of associated ethical/legal/social issues. An overview of laboratory and computer-based methods to study genomes, and their applications. Hands-on computer lab session providing an opportunity to use and experiment with bioinformatics software and databases utilized in genomics and bioinformatics research. Prerequisite: MBB 231, BISC 202 and 3 units of CMPT or equivalent, with a minimum grade of C.

MBB 402 - Developmental Biology of Cell Signalling (3)

Aspects of developmental biology in the context of signal transduction pathways. The diverse mechanisms used in cell signalling and how the various approaches to the study of signal transduction in organismal development complement each other will be examined with an emphasis on current literature. Prerequisite: MBB 331 or BISC 302W with a minimum grade of C.

MBB 420 - Selected Topics in Contemporary Biochemistry (3)

The topics in this course will vary from term to term, depending on faculty availability and student interest. Prerequisite: Will be announced before the start of the term and will depend upon the nature of the topic offered.

MBB 421 - Nucleic Acids (3)

Recent literature is examined for insights into the structure and properties of DNA and RNA, drawing on a variety of biochemical, chemical and molecular biological perspectives. Prerequisite: MBB 331 with a minimum grade of C.

MBB 422 - Biomembranes (3)

A review of recent research on the structure, dynamics, function and biosynthesis of membranes, membrane lipids and proteins. Prerequisite: MBB 322 and MBB 309W with a minimum grade of C, MBB 324 as a pre or co-requisite.

MBB 423 - Protein Structure and Function (3)

Mechanistic principles for how protein molecules achieve diverse functions such as chemical catalysis and conformational switching. Students will learn to critique hypotheses about structural mechanisms, and to interpret the primary literature reporting on structural evidence from X-ray diffraction and spectroscopy. Prerequisite: MBB 323 or MBB 324, with a minimum grade of C.

MBB 424 - Membrane Transport Mechanisms (3)

Structure and function of molecules that mediate transport across membranes including channels, carriers, and pumps. Primary literature from the fields of biochemistry and physiology will be explored through lectures and independent study. Prerequisite: MBB 321, 322 and either MBB 323 or CHEM 360, with a minimum grade of C. Students who have taken MBB 420 under the same topic may not take this course for further credit.

MBB 426 - Immune System I: Basis of Innate and Adaptive Immunity (4)

Basic organization of the immune system, including structure, function and genetics of antibodies, T-cell receptors, innate immune receptors, and the complement system; structure and function of lymphoid tissues. Development of cells and tissues involved in immune responses. Innate and adaptive antibody and cellular immune responses and their orchestration, including mucosal immunity. Prerequisite: MBB 331 with a minimum grade of C, or permission of the instructor. Students with credit for HSCI 426 may not take this course for credit.

MBB 427 - Immune System II: Immune Responses in Health and Disease (3)

Defects in the immunologic response to bacterial, viral and parasitic infections. The mechanisms of action of vaccines. The causes of immune-mediated diseases, such as autoimmune diseases, hypersensitivity reactions (including asthma and allergy) and organ transplant rejection. The reaction of the immune system to cancer and immunotherapy for cancer. Prerequisite: MBB 426 or HSCI 426, with a minimum grade of C, or permission of the instructor. Students with credit for HSCI 427 cannot take MBB 427 for credit.

MBB 428 - Microbial Pathogenesis (3)

The molecular strategies that bacterial and viral pathogens use to colonize the human body and cause disease will be studied. Emphasis will be placed on the specific microbes and their virulence factors, secretion systems, toxins and surface adhesions. Strategies for combating microbial infections - antibiotics, antiviral agents and vaccines - will be discussed in detail. Prerequisite: MBB 322 with a minimum grade of C.

MBB 429 - RNA-mediated Gene Regulation (3)

RNA plays an important role in gene regulation. This course will explore recent primary literature studying the biochemistry of these processes. Prerequisite: MBB 331 with a minimum grade of C.

Section Instructor Day/Time Location
Peter Unrau
May 7 – Aug 3, 2018: Wed, Fri, 8:30–10:20 a.m.
Burnaby
MBB 430 - Mechanisms of Secretory Transport (3)

Analysis of mechanisms of protein, lipid, and nucleic acid delivery and transport within cells; processes of protein targeting, exocytosis, and endocytosis; molecular mechanisms of vesicle transport and membrane fusion; role in signal transduction and disease. Prerequisite: MBB 322 and MBB 331, with a minimum grade of C.

MBB 431 - Cells and the Environment (3)

The cellular processes at the interface of cells and the environment will be explored in-depth. Through the use of lectures and group discussions and an emphasis on the primary literature, the focus will be on recent developments in molecular cell biology through the study of symbiosis and adaptation. Prerequisite: MBB 322 and 331, with a minimum grade of C.

MBB 432 - Advanced Molecular Biology Techniques (4)

Laboratory with accompanying lectures designed to give practical experience in advanced contemporary molecular biology techniques. Projects will involve recombinant gene and protein manipulations to investigate the dynamics of proteins within living cells. Prerequisite: MBB 309W, MBB 308 and MBB 331, with a minimum grade of C, or permission of instructor.

Section Instructor Day/Time Location
Chris Beh
May 7 – Aug 3, 2018: Tue, Wed, 1:30–5:20 p.m.
Burnaby
MBB 436 - Gene Expression (3)

Lectures and student presentations will cover the wide range of ways in which organisms (primarily eukaryotes) regulate gene expression along the pathway from DNA to protein. Prerequisite: MBB 331, with a minimum grade of C.

MBB 438 - Human Molecular Genetics (3)

Recent advances in human molecular genetics including genome analysis, gene therapy, genetic testing, and studies of genetic disorders. Prerequisite: MBB 331, with a minimum grade of C.

MBB 440 - Selected Topics in Contemporary Molecular Biology (3)

The topics in this course will vary from term to term, depending on faculty availability and student interest. Prerequisite: will depend upon the nature of the topic offered.

MBB 441 - Bioinformatics (3)

Examining the use of, and theory behind, bioinformatic software and algorithms for the analysis of macromolecular data. Includes consideration of recent literature and discussion of ethics in method development and analysis. Prerequisite: MBB 331 and MBB 342, with a minimum grade of C.

MBB 443 - Protein Biogenesis and Degradation (3)

A consideration of protein biogenesis (folding, assembly, and targeting to cellular compartments), modification, and degradation, and their roles in protein and cellular function. Prerequisite: MBB 321 and MBB 322, with a minimum grade of C.

MBB 446 - The Molecular Biology of Cancer (3)

An examination of the molecular mechanisms that contribute to tumor formation, the hallmarks of cancer and their relationship to therapeutic strategies. Prerequisite: MBB 322 and 331, with a minimum grade of C, or permission of the instructor.

MBB 461 - Comparative Genomics (3)

Examination of the fundamentals of comparative genomics, identification and activity of functional elements in genomes, inter- and intra-species comparisons, relationship of genomic to phenotypic variation, and personalized genomics are among the topics to be explored. Comparison of genome data has impacts on medicine and many other fields of the life sciences. Prerequisite: MBB 331 and MBB 342, with a minimum grade of C. Students who have completed MBB 440 Comparative Genomics may not complete this course for further credit.

MBB 462 - Human Genomics (3)

The organization of the human genome and the role of genomic variation in health and disease. Genomics and personalized medicine; intellectual property and privacy issues. Prerequisite: MBB 331 and MBB 342, with a minimum grade of C. Students with credit for MBB 440 with this same course title may not complete this course for further credit.

MBB 463 - Forensic Genomics (3)

A focus on the molecular and genomic biology associated with forensic science, including genome structure, genotyping, genetic analysis of DNA fingerprints, DNA data bases and CODIS, Y STRs. mtDNA and ethical considerations of DNA typing. Prerequisite: MBB 331, with a minimum grade of C.

Section Instructor Day/Time Location
Willie Davidson
Jun 26 – Aug 3, 2018: Tue, Thu, 8:30 a.m.–12:20 p.m.
Burnaby
MBB 464 - From Genome to System (3)

Methods that enable the integration of Biochemical, Genetic and Genomic knowledge (BiGG) to reconstruct a genomic scale network that defines the metabolic physiology of an organism will be explored. Applications of these approaches in the fields of microbial evolution, interaction networks, genetic engineering and drug discovery will be discussed. Prerequisite: MBB 331 and MBB 342.

PHYS 433 - Biological Physics Laboratory (3)

Experiments in biological and soft condensed matter physics including investigation of Brownian motion, molecular order and biophysical forces using techniques such as optical trapping, NMR, spectroscopy and x-ray diffraction. Attention will also be given to more general skills, including experimental design, operating and troubleshooting experimental equipment, data analysis, and the presentation of experimental results. Prerequisite: PHYS 231 or MBB 309; PHYS 344 or PHYS 347 or MBB 323 or CHEM 360, with a minimum grade of C- or permission of the department. Students with credit for PHYS 433W may not take this course for credit. Quantitative.

Co-operative Education Recommendation

Students are encouraged to enroll in co-operative education.

University Degree Requirements

Students must also satisfy University degree requirements for degree completion.

Writing, Quantitative, and Breadth Requirements

Students admitted to Ά‘ΟγΤ°AV beginning in the fall 2006 term must meet writing, quantitative and breadth requirements as part of any degree program they may undertake. See Writing, Quantitative, and Breadth Requirements for university-wide information.

WQB Graduation Requirements

A grade of C- or better is required to earn W, Q or B credit

Requirement

Units

Notes
W - Writing

6

Must include at least one upper division course, taken at Ά‘ΟγΤ°AV within the student’s major subject
Q - Quantitative

6

Q courses may be lower or upper division
B - Breadth

18

Designated Breadth Must be outside the student’s major subject, and may be lower or upper division
6 units Social Sciences: B-Soc
6 units Humanities: B-Hum
6 units Sciences: B-Sci

6

Additional Breadth 6 units outside the student’s major subject (may or may not be B-designated courses, and will likely help fulfil individual degree program requirements)

Students choosing to complete a joint major, joint honours, double major, two extended minors, an extended minor and a minor, or two minors may satisfy the breadth requirements (designated or not designated) with courses completed in either one or both program areas.

 

Residency Requirements and Transfer Credit

The University's residency requirement stipulates that, in most cases, total transfer and course challenge credit may not exceed 60 units, and may not include more than 15 units as upper division work.

  • At least half of the program's total units must be earned through Ά‘ΟγΤ°AV study
  • At least two thirds of the program's total upper division units must be earned through Ά‘ΟγΤ°AV study
  • At least two thirds of the upper division units in the courses of a school offering (or joint offer) must be earned through that school at Ά‘ΟγΤ°AV
  • For information regarding transfer, consult an Advisor.

Elective Courses

In addition to the courses listed above, students should consult an academic advisor to plan the remaining required elective courses.

Research and Directed Reading Courses

For degree credit, students are limited to nine undergraduate research and/or directed reading units. These include MBB 471, 481, 482, 483, 490, 491, 492, and corresponding courses offered by other departments (e.g. BISC 490, 491, 492, 498, 499). If students complete more than nine units of these courses, they may not apply the extra units toward the degree total (120 units).