¶¡ÏãÔ°AV

i Please note:  

To view the current calendar, go to 

| ¶¡ÏãÔ°AV Calendar | Summer 2016

Statistics Major

Bachelor of Science

The department offers a bachelor of science (BSc) program in statistics within the Faculty of Science.

The program maintains a committee of advisors whose office hours are available at . Students should seek program planning advice early in their academic careers.

¶¡ÏãÔ°AV Requirements

Students may be admitted by direct entry on their university application, or by application to the Department of Statistics, after they have been admitted. Students wishing to do a statistics minor must apply to the department.

Visit for admission and continuation requirements.

Courses for Further Credit

No student may complete, for further credit, any course offered by the Department of Statistics and Actuarial Science that is a prerequisite for a course that the student has already completed with a grade of C- or higher without permission of the department.

Computing Recommendation

Experience with a high level programming language is recommended by the start of the second year.

Prerequisite Grade Requirement

Students must have a grade of C- or better in prerequisites for STAT courses offered by the Department of Statistics and Actuarial Science.

GPA Required for Continuation

To continue in the program, students must maintain at least a 2.25 grade point average in MATH, STAT, MACM and ACMA courses.

Credit for Statistics Courses

Credit for STAT courses depends on the order in which the courses are completed. There are three kinds of courses:

  • Introductory course (STAT 100)
  • Service courses (STAT 101, 201, 203, 301, 302, 305, 403)
  • Mainstream courses (STAT 270, 285, 300W, 330, 340, 350, 380, 410, 430, 445, 450, 460, 475, 485)

Once a service or mainstream course is completed, credit may not be obtained for STAT 100. Once a mainstream course is completed, credit may not be obtained for any service course. An exception is that STAT 302, 305 and 403 may be completed for credit after completing STAT 270.

Accreditation of Courses

The Statistical Society of Canada has accredited certain courses within the department for partial fulfillment of the educational requirements for the associate statistician (AStat) designation. The list of accredited courses is available at . Please contact the department for details. Further information on the professional statistician (PStat) and associate statistician (AStat) designations is available at .

Program Requirements

Students complete 120 units, as specified below.

Lower Division Requirements

Students complete a total of 21-22 units, including one of

CMPT 125 - Introduction to Computing Science and Programming II (3)

A rigorous introduction to computing science and computer programming, suitable for students who already have some background in computing science and programming. Intended for students who will major in computing science or a related program. Topics include: fundamental algorithms; elements of empirical and theoretical algorithmics; abstract data types and elementary data structures; basic object-oriented programming and software design; computation and computability; specification and program correctness; and history of computing science. Prerequisite: CMPT120. Co-requisite: CMPT127. Students with credit for CMPT 126, 135 or CMPT 200 or higher may not take for further credit. Quantitative.

Section Instructor Day/Time Location
Bobby Chan
May 9 – Aug 8, 2016: Mon, Wed, Fri, 2:30–3:20 p.m.
Burnaby
CMPT 126 - Introduction to Computing Science and Programming (3)

A rigorous introduction to computing science and computer programming, suitable for students who already have substantial programming background. Topics include: fundamental algorithms and problem solving; abstract data types and elementary data structures; basic object-oriented programming and software design; elements of empirical and theoretical algorithmics; computation and computability; specification and program correctness; and history of computing science. Prerequisite: CMPT 120: Introduction to Computing Science and Programming I. Students with credit for CMPT 125, 128, 130, 135 or higher may not take CMPT 126 for further credit. Quantitative/Breadth-Science.

and one of

MATH 150 - Calculus I with Review (4)

Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Topics as for Math 151 with a more extensive review of functions, their properties and their graphs. Recommended for students with no previous knowledge of Calculus. In addition to regularly scheduled lectures, students enrolled in this course are encouraged to come for assistance to the Calculus Workshop (Burnaby), or Math Open Lab (Surrey). Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least B+, or MATH 100 with a grade of at least B-, or achieving a satisfactory grade on the ¶¡ÏãÔ°AV Calculus Readiness Test. Students with credit for either MATH 151, 154 or 157 may not take MATH 150 for further credit. Quantitative.

Section Instructor Day/Time Location
Distance Education
Veselin Jungic
May 9 – Aug 8, 2016: Mon, Tue, Wed, Fri, 1:30–2:20 p.m.
Burnaby
OP01 TBD
MATH 151 - Calculus I (3)

Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Logarithmic and exponential functions, trigonometric functions, inverse functions. Limits, continuity, and derivatives. Techniques of differentiation, including logarithmic and implicit differentiation. The Mean Value Theorem. Applications of differentiation including extrema, curve sketching, Newton's method. Introduction to modeling with differential equations. Polar coordinates, parametric curves. Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least A, or MATH 100 with a grade of at least B, or achieving a satisfactory grade on the ¶¡ÏãÔ°AV Calculus Readiness Test. Students with credit for either MATH 150, 154 or 157 may not take MATH 151 for further credit. Quantitative.

MATH 154 - Calculus I for the Biological Sciences (3)

Designed for students specializing in the biological and medical sciences. Topics include: limits, growth rate and the derivative; elementary functions, optimization and approximation methods, and their applications; mathematical models of biological processes. Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least B, or MATH 100 with a grade of at least C, or achieving a satisfactory grade on the ¶¡ÏãÔ°AV Calculus Readiness Test. Students with credit for either MATH 150, 151 or 157 may not take MATH 154 for further credit. Quantitative.

MATH 157 - Calculus I for the Social Sciences (3)

Designed for students specializing in business or the social sciences. Topics include: limits, growth rate and the derivative; logarithmic exponential and trigonometric functions and their application to business, economics, optimization and approximation methods; functions of several variables. Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least B, or MATH 100 with a grade of at least C, or achieving a satisfactory grade on the ¶¡ÏãÔ°AV Calculus Readiness Test. Students with credit for either MATH 150, 151 or 154 may not take MATH 157 for further credit. Quantitative.

Section Instructor Day/Time Location
Jonathan Jedwab
May 9 – Aug 8, 2016: Mon, Wed, Fri, 11:30 a.m.–12:20 p.m.
Burnaby
OP01 TBD

and one of

MATH 152 - Calculus II (3)

Riemann sum, Fundamental Theorem of Calculus, definite, indefinite and improper integrals, approximate integration, integration techniques, applications of integration. First-order separable differential equations and growth models. Sequences and series, series tests, power series, convergence and applications of power series. Prerequisite: MATH 150 or 151; or MATH 154 or 157 with a grade of at least B. Students with credit for MATH 155 or 158 may not take this course for further credit. Quantitative.

Section Instructor Day/Time Location
Justin Gray
May 9 – Aug 8, 2016: Mon, Wed, Fri, 8:30–9:20 a.m.
Burnaby
OP01 TBD
MATH 155 - Calculus II for the Biological Sciences (3)

Designed for students specializing in the biological and medical sciences. Topics include: the integral, partial derivatives, differential equations, linear systems, and their applications; mathematical models of biological processes. Prerequisite: MATH 150, 151 or 154; or MATH 157 with a grade of at least B. Students with credit for MATH 152 or 158 may not take this course for further credit. Quantitative.

Section Instructor Day/Time Location
Jeremy Chiu
May 9 – Aug 8, 2016: Mon, Wed, Fri, 8:30–9:20 a.m.
Burnaby
OPO1 TBD
MATH 158 - Calculus II for the Social Sciences (3)

Theory of integration and its applications; introduction to multivariable calculus with emphasis on partial derivatives and their applications; introduction to differential equations with emphasis on some special first-order equations and their applications to economics and social sciences; continuous probability models; sequences and series. Prerequisite: MATH 150 or 151 or 154 or 157. Students with credit for MATH 152 or 155 may not take MATH 158 for further credit. Quantitative.

and one of

MATH 232 - Applied Linear Algebra (3)

Linear equations, matrices, determinants. Introduction to vector spaces and linear transformations and bases. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. An emphasis on applications involving matrix and vector calculations. Prerequisite: MATH 150 or 151; or MACM 101; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 240 make not take this course for further credit. Quantitative.

Section Instructor Day/Time Location
Imin Chen
May 9 – Aug 8, 2016: Mon, 11:30 a.m.–12:20 p.m.
May 9 – Aug 8, 2016: Wed, Fri, 11:30 a.m.–12:20 p.m.
Burnaby
Burnaby
Randall Pyke
May 9 – Aug 8, 2016: Mon, Wed, Fri, 2:30–3:20 p.m.
Surrey
OP01 TBD
OP02 TBD
MATH 240 - Algebra I: Linear Algebra (3) *

Linear equations, matrices, determinants. Real and abstract vector spaces, subspaces and linear transformations; basis and change of basis. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. Applications. Subject is presented with an abstract emphasis and includes proofs of the basic theorems. Prerequisite: MATH 150 or 151; or MACM 101; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 232 cannot take this course for further credit. Quantitative.

Section Instructor Day/Time Location
Joseph Evers
May 9 – Aug 8, 2016: Mon, Wed, Fri, 11:30 a.m.–12:20 p.m.
Burnaby
OP01 TBD

and all of

MATH 251 - Calculus III (3)

Rectangular, cylindrical and spherical coordinates. Vectors, lines, planes, cylinders, quadric surfaces. Vector functions, curves, motion in space. Differential and integral calculus of several variables. Vector fields, line integrals, fundamental theorem for line integrals, Green's theorem. Prerequisite: MATH 152; or MATH 155 or MATH 158 with a grade of at least B. Recommended: It is recommended that MATH 240 or 232 be taken before or concurrently with MATH 251. Quantitative.

Section Instructor Day/Time Location
Steven Ruuth
May 9 – Aug 8, 2016: Mon, Wed, Fri, 1:30–2:20 p.m.
Burnaby
OP01 TBD
STAT 270 - Introduction to Probability and Statistics (3)

Basic laws of probability, sample distributions. Introduction to statistical inference and applications. Prerequisite: or Corequisite: MATH 152 or 155 or 158. Quantitative.

Section Instructor Day/Time Location
Distance Education
Rachel Altman
May 9 – Aug 8, 2016: Wed, 11:30 a.m.–12:20 p.m.
May 9 – Aug 8, 2016: Fri, 10:30 a.m.–12:20 p.m.
Burnaby
Burnaby
OP01 TBD
STAT 285 - Intermediate Probability and Statistics (3)

This course is a continuation of STAT 270. Review of probability models, procedures for statistical inference from survey results and experimental data. Statistical model building. Elementary design of experiments and regression methods. Introduction to categorical data analysis. Prerequisite: STAT 270. Prerequisite or corequisite MATH 232 or MATH 240. Quantitative.

* recommended

Upper Division Requirements

Students complete a total of 30 units, including all of

STAT 330 - Introduction to Mathematical Statistics (3)

Review of probability and distributions. Multivariate distributions. Distributions of functions of random variables. Limiting distributions. Inference. Sufficient statistics for the exponential family. Maximum likelihood. Bayes estimation, Fisher information, limited distributions of MLEs. Likelihood ratio tests. Prerequisite: STAT 285 and MATH 251. Quantitative.

STAT 340 - Introduction to Statistical Computing and Exploratory Data Analysis (3)

Statistical computing in R and SAS. Data management: reading, editing and storing statistical data; querying databases with SQL. Data exploration and representation: summarizing data with tables, graphs and other statistical tools. Data simulation: model-based and empirical. The SAS component of the course will give students a good start for writing the SAS programming certification exams. Prerequisite: STAT 285 or STAT 302 or STAT 305 or equivalent. Quantitative.

STAT 350 - Linear Models in Applied Statistics (3)

Theory and application of linear regression. Normal distribution theory. Hypothesis tests and confidence intervals. Model selection. Model diagnostics. Introduction to weighted least squares and generalized linear models. Prerequisite: STAT 285 and MATH 251. Quantitative.

and an additional 12 units in 400-level STAT courses

nine additional upper division ACMA, MACM, MATH or STAT units (excluding STAT 301, 302, 305, 403). Consult an advisor before selecting these courses. The following are recommended.

MACM 316 - Numerical Analysis I (3)

A presentation of the problems commonly arising in numerical analysis and scientific computing and the basic methods for their solutions. Prerequisite: MATH 152 or 155 or 158, and MATH 232 or 240, and computing experience. Quantitative.

Section Instructor Day/Time Location
Benjamin Adcock
May 9 – Aug 8, 2016: Mon, Wed, Fri, 10:30–11:20 a.m.
Burnaby
D101 May 9 – Aug 8, 2016: Mon, 2:30–3:20 p.m.
Burnaby
D102 May 9 – Aug 8, 2016: Mon, 3:30–4:20 p.m.
Burnaby
D103 May 9 – Aug 8, 2016: Tue, 10:30–11:20 a.m.
Burnaby
D104 May 9 – Aug 8, 2016: Tue, 11:30 a.m.–12:20 p.m.
Burnaby
D105 May 9 – Aug 8, 2016: Tue, 9:30–10:20 a.m.
Burnaby
D106 May 9 – Aug 8, 2016: Tue, 1:30–2:20 p.m.
Burnaby
D107 May 9 – Aug 8, 2016: Mon, 4:30–5:20 p.m.
Burnaby
STAT 300W - Statistics Communication (3)

Guided experiences in written and oral communication of statistical ideas and results with both scientific and lay audiences. Prerequisite: or Corequisite: STAT 350. Writing.

STAT 380 - Introduction to Stochastic Processes (3)

Review of discrete and continuous probability models and relationships between them. Exploration of conditioning and conditional expectation. Markov chains. Random walks. Continuous time processes. Poisson process. Markov processes. Gaussian processes. Prerequisite: STAT 330, or all of: STAT 285, MATH 208, and MATH 251. Quantitative.

STAT 410 - Statistical Analysis of Sample Surveys (3) *

An introduction to the major sample survey designs and their mathematical justification. Associated statistical analyses. Prerequisite: STAT 350. Quantitative.

STAT 430 - Statistical Design and Analysis of Experiments (3) *

An extension of the designs discussed in STAT 350 to include more than one blocking variable, incomplete block designs, fractional factorial designs, and response surface methods. Prerequisite: STAT 350 (or MATH 372). Quantitative.

STAT 445 - Applied Multivariate Analysis (3)

Introduction to principal components, cluster analysis, and other commonly used multivariate techniques. Prerequisite: STAT 285 or STAT 302 or STAT 305 or equivalent. Quantitative.

STAT 450 - Statistical Theory (3) *

Distribution theory, methods for constructing tests, estimators, and confidence intervals with special attention to likelihood methods. Properties of the procedures including large sample theory. Prerequisite: STAT 330. Quantitative.

STAT 460 - Bayesian Statistics (3)

The Bayesian approach to statistics is an alternative and increasingly popular way of quantifying uncertainty in the presence of data. This course considers comparative statistical inference, prior distributions, Bayesian computation, and applications. Prerequisite: STAT 330 and 350. Quantitative.

STAT 475 - Applied Discrete Data Analysis (3)

Introduction to standard methodology for analyzing categorical data including chi-squared tests for two- and multi-way contingency tables, logistic regression, and loglinear (Poisson) regression. Prerequisite: STAT 302 or STAT 305 or STAT 350. Students with credit for the former STAT 402 or 602 may not take this course for further credit. Quantitative.

STAT 485 - Applied Time Series Analysis (3)

Introduction to linear time series analysis including moving average, autoregressive and ARIMA models, estimation, data analysis, forecasting errors and confidence intervals, conditional and unconditional models, and seasonal models. Prerequisite: STAT 285 or STAT 302 or STAT 305 or equivalent. This course may not be taken for further credit by students who have credit for ECON 484. Quantitative.

STAT 490 - Selected Topics in Probability and Statistics (3)

Topics in areas of probability and statistics not covered in the regular undergraduate curriculum of the department. Prerequisite: Dependent on the topic covered.

Section Instructor Day/Time Location
Tim Swartz
May 9 – Jun 20, 2016: Mon, Wed, Fri, 10:30 a.m.–12:20 p.m.
Burnaby
STAT 495 - Directed Studies in Probability and Statistics (3)

Independent reading or research on consultation with the supervising instructor. Prerequisite: Written permission of the department undergraduate studies committee.

* Stat 450 and at least one of Stat 410 or 430 are recommended for students who may wish to seek accreditation with the Statistical Society of Canada.

Minor Program Requirement

Students complete a minor in a discipline other than statistics. The certificate in actuarial mathematics may fulfil this requirement.

Faculty of Science Degree Requirements

In addition to the above requirements, students must also satisfy Faculty of Science degree requirements to complete a minimum of 120 units including additional upper division units to total a minimum of 44 upper division units.

Writing, Quantitative, and Breadth Requirements

Students admitted to ¶¡ÏãÔ°AV beginning in the fall 2006 term must meet writing, quantitative and breadth requirements as part of any degree program they may undertake. See for university-wide information.

WQB Graduation Requirements

A grade of C- or better is required to earn W, Q or B credit

Requirement

Units

Notes
W - Writing

6

Must include at least one upper division course, taken at ¶¡ÏãÔ°AV within the student’s major subject
Q - Quantitative

6

Q courses may be lower or upper division
B - Breadth

18

Designated Breadth Must be outside the student’s major subject, and may be lower or upper division
6 units Social Sciences: B-Soc
6 units Humanities: B-Hum
6 units Sciences: B-Sci

6

Additional Breadth 6 units outside the student’s major subject (may or may not be B-designated courses, and will likely help fulfil individual degree program requirements)

Students choosing to complete a joint major, joint honours, double major, two extended minors, an extended minor and a minor, or two minors may satisfy the breadth requirements (designated or not designated) with courses completed in either one or both program areas.

 

Residency Requirements and Transfer Credit

The University’s residency requirement stipulates that, in most cases, total transfer and course challenge credit may not exceed 60 units, and may not include more than 15 units as upper division work.

Elective Courses

In addition to the courses listed above, students should consult an academic advisor to plan the remaining required elective courses.