Computing Science Second Degree Major
The school offers a second degree program leading to a bachelor of science (BSc) or bachelor of arts (BA) degree.
Well-prepared students can complete this second degree program in one year (three terms) of full-time study. The ideal preparation is a mathematics background with programming experience comparable to the first two years of the computing science major program and a prior degree in which English was the language of instruction. Students without this may need additional time to complete lower division prerequisites prior to starting upper division courses.
Ά‘ΟγΤ°AV Requirements
This is a direct admission program and holders of a recognized bachelor's degree in another discipline may follow this program to earn a second degree.
Applicants should indicate their program interest by selecting computing science, Faculty of Applied Sciences BSc major as their first choice. Applicants are selected primarily on upper division (third and fourth year) performance in the prior bachelor's degree and subsequent professional experience in which English was the language of instruction.
Consult an for provisions governing high school direct entry or direct transfer from another post-secondary institution.
Continuation Requirements
Students who do not maintain at least a 2.40 CGPA, will be placed on the schoolβs probation. Courses available to probationary students may be limited.
Each term, these students must prior to enrolment and must achieve either a term 2.40 term GPA or an improved CGPA. Reinstatement from probationary standing occurs when the CGPA improves to 2.40 or better and is maintained.
Graduation Requirements
A GPA of 2.00 must be obtained for upper division courses used to fulfill the program requirements.
Prerequisite Grade Requirement
Computing science course entry requires a grade of C- or better in each prerequisite course.
A minimum 2.40 cumulative grade point average is required for 200, 300 and 400 level courses. For complete information, contact an
Students must obtain permission from the department if they wish to complete, for further credit, any course that is a prerequisite for a course the student has already completed with a grade of C- or higher.
Program Requirements
Students complete at least 45 upper division units, as specified below and 42 of these units must be Computing Science courses. The remaining three units can be taken in another discipline.
Students must consult an before commencing the program.
Lower Division Requirements
Students will need to apply for course waivers for the lower division prerequisites prior to starting the program. If lower division prerequisites have not been met, required courses may be taken at Ά‘ΟγΤ°AV.
Upper Division Requirements
In accord with University regulations, this second degree program consists of the upper division requirements of the program as described below.
Breadth Requirement
Five courses from five of the six Table I areas of concentration must be completed including both of
This course aims to give the student an understanding of what a modern operating system is, and the services it provides. It also discusses some basic issues in operating systems and provides solutions. Topics include multiprogramming, process management, memory management, and file systems. Prerequisite: CMPT 225 and MACM 101.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Jan 6 β Apr 13, 2015: Mon, Wed, Fri, 12:30β1:20 p.m.
|
Surrey |
||
Jan 6 β Apr 13, 2015: Thu, 5:30β8:20 p.m.
|
Burnaby |
Analysis and design of data structures for lists, sets, trees, dictionaries, and priority queues. A selection of topics chosen from sorting, memory management, graphs and graph algorithms. Prerequisite: CMPT 225, MACM 201, MATH 151 (or MATH 150), and MATH 232 or 240.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Pavol Hell |
Jan 6 β Apr 13, 2015: Tue, 2:30β4:20 p.m.
Jan 6 β Apr 13, 2015: Thu, 2:30β3:20 p.m. |
Burnaby Burnaby |
CMPT 354 is also recommended.
Depth Requirement
Twelve units of additional CMPT courses numbered CMPT 400 or above must be completed (excluding CMPT 415, 416 and 498, which may be included by special permission).
BSc Credential
For a BSc computing science degree, the following additional requirements must be met.
two additional courses chosen from Table I, Table II or Table III
A presentation of the problems commonly arising in numerical analysis and scientific computing and the basic methods for their solutions. Prerequisite: MATH 152 or 155 or 158, and MATH 232 or 240, and computing experience. Quantitative.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Benjamin Adcock |
Jan 6 β Apr 13, 2015: Mon, Wed, Fri, 12:30β1:20 p.m.
|
Burnaby |
|
D101 |
Jan 6 β Apr 13, 2015: Tue, 9:30β10:20 a.m.
|
Burnaby |
|
D102 |
Jan 6 β Apr 13, 2015: Tue, 10:30β11:20 a.m.
|
Burnaby |
|
D103 |
Jan 6 β Apr 13, 2015: Tue, 11:30 a.m.β12:20 p.m.
|
Burnaby |
|
D104 |
Jan 6 β Apr 13, 2015: Thu, 9:30β10:20 a.m.
|
Burnaby |
|
D105 |
Jan 6 β Apr 13, 2015: Thu, 10:30β11:20 a.m.
|
Burnaby |
|
D106 |
Jan 6 β Apr 13, 2015: Thu, 11:30 a.m.β12:20 p.m.
|
Burnaby |
and one of
An examination of social processes that are being automated and implications for good and evil, that may be entailed in the automation of procedures by which goods and services are allocated. Examination of what are dehumanizing and humanizing parts of systems and how systems can be designed to have a humanizing effect. Prerequisite: A CMPT course and 45 units. Breadth-Science.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Jan 6 β Apr 13, 2015: Tue, 5:30β8:20 p.m.
|
Burnaby |
Examination of the emergence and shaping of information and communication technologies in the digital age. Explores new media and social change between everyday life, social institutions, and various enterprises. Emphasis is placed on social context and relations of power. May repeat for credit if topic studied is different. Prerequisite: CMNS 253 (or 253W), and CMNS 261 or 362.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Jan 6 β Apr 13, 2015: Mon, 5:30β7:20 p.m.
|
Burnaby |
||
E101 |
Jan 6 β Apr 13, 2015: Mon, 12:30β1:20 p.m.
|
Burnaby |
|
E102 |
Jan 6 β Apr 13, 2015: Mon, 1:30β2:20 p.m.
|
Burnaby |
|
E103 |
Jan 6 β Apr 13, 2015: Mon, 2:30β3:20 p.m.
|
Burnaby |
|
E104 |
Jan 6 β Apr 13, 2015: Mon, 3:30β4:20 p.m.
|
Burnaby |
BA Credential
For a BA computing science degree within the Faculty of Applied Sciences, the following additional requirements must be met.
one additional CMPT upper division course chosen from Table I or Table II must be completed bringing the total upper division units in CMPT courses to a minimum of 30 units.
a concentration of 15 units in a Faculty of Arts and Social Sciences discipline (department) including at least six units of upper division credit.
Areas of Concentration
The primary upper division requirements are structured according to breadth, depth and credential requirements as listed below.
As part of a major program, students may complete one or more areas of concentrations from the six areas listed in Table I. To complete a concentration, students complete the major requirements, including four courses in the corresponding area as listed in Table I, two of which must be at the 400 division. Courses used to meet the requirements of a concentration may also be used to meet other program requirements.
Table I β Computing Science Concentrations
Artificial Intelligence
Provides a unified discussion of the fundamental approaches to the problems in artificial intelligence. The topics considered are: representational typology and search methods; game playing, heuristic programming; pattern recognition and classification; theorem-proving; question-answering systems; natural language understanding; computer vision. Prerequisite: CMPT 225 and MACM 101. Students with credit for CMPT 410 may not take this course for further credit.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Oliver Schulte |
Jan 6 β Apr 13, 2015: Mon, 12:30β1:20 p.m.
Jan 6 β Apr 13, 2015: Wed, Fri, 12:30β1:20 p.m. |
Burnaby Burnaby |
|
Jan 6 β Apr 13, 2015: Wed, 4:30β7:20 p.m.
|
Surrey |
The principles involved in using computers for data acquisition, real-time processing, pattern recognition and experimental control in biology and medicine will be developed. The use of large data bases and simulation will be explored. Prerequisite: Completion of 60 units including CMPT 125, 126 or 128 (or 102 with a grade of B or higher).
Section | Instructor | Day/Time | Location |
---|---|---|---|
Ghassan Hamarneh |
Jan 6 β Apr 13, 2015: Mon, 2:30β4:20 p.m.
Jan 6 β Apr 13, 2015: Wed, 2:30β3:20 p.m. |
Burnaby Burnaby |
Formal and foundational issues dealing with the representation of knowledge in artificial intelligence systems are covered. Questions of semantics, incompleteness, non-monotonicity and others will be examined. As well, particular approaches, such as procedural or semantic network, may be discussed. Prerequisite: Completion of nine units in Computing Science upper division courses or, in exceptional cases, permission of the instructor.
Computational approaches to image understanding will be discussed in relation to theories about the operation of the human visual system and with respect to practical applications in robotics. Topics will include edge detection, shape from shading, stereopsis, optical flow, Fourier methods, gradient space, three-dimensional object representation and constraint satisfaction. Prerequisite: MATH 152, and nine units in Computing upper division courses or permission of the instructor.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Brian Funt |
Jan 6 β Apr 13, 2015: Mon, Wed, Fri, 1:30β2:20 p.m.
|
Burnaby |
This course examines the theoretical and applied problems of constructing and modelling systems, which aim to extract and represent the meaning of natural language sentences or of whole discourses, but drawing on contributions from the fields of linguistics, cognitive psychology, artificial intelligence and computing science. Prerequisite: Completion of nine units in Computing Science upper division courses or, in exceptional cases, permission of the instructor.
This course covers various topics in computer vision with the emphasis on the model-based approach. Main subjects include 2-D and 3-D representations, matching, constraint relaxation, model-based vision systems. State-of-the-art robot vision systems will be used extensively as study cases. The solid modelling and CAD aspects of this course should also interest students of computer graphics. Prerequisite: MATH 152 and nine units in CMPT upper division courses, or permission of the instructor.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Ze-Nian Li |
Jan 6 β Apr 13, 2015: Mon, Wed, Fri, 12:30β1:20 p.m.
|
Burnaby |
Intelligent Systems using modern constraint programming and heuristic search methods. A survey of this rapidly advancing technology as applied to scheduling, planning, design and configuration. An introduction to constraint programming, heuristic search, constructive (backtrack) search, iterative improvement (local) search, mixed-initiative systems and combinatorial optimization. Prerequisite: CMPT 225.
Computationally-oriented theories of human cognitive architecture are explored, beginning with neurologically inspired (neural network) models of "low-level" brain processes, and progressing upwards to higher-level symbolic processing, of the kind that occurs in rule-following and problem solving. Arguments concerning the need for modular processing and combinatorially adequate forms of mental representation are examined at length. Prerequisite: CMPT 225. Recommended: CMPT 310.
Current topics in artificial intelligence depending on faculty and student interest.
Computer Graphics and Multimedia
This course provides an introduction to the fundamentals of computer graphics. Topics include graphics display and interaction hardware, basic algorithms for 2D primitives, anti-aliasing, 2D and 3D geometrical transformations, 3D projections/viewing, Polygonal and hierarchical models, hidden-surface removal, basic rendering techniques (color, shading, raytracing, radiosity), and interaction techniques. Prerequisite: CMPT 225 and MATH 232 or 240.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Ping Tan |
Jan 6 β Apr 13, 2015: Mon, 12:30β2:20 p.m.
Jan 6 β Apr 13, 2015: Wed, 12:30β1:20 p.m. |
Burnaby Burnaby |
This course provides a comprehensive study of user interface design. Topics include: goals and principles of UI design (systems engineering and human factors), historical perspective, current paradigms (widget-based, mental model, graphic design, ergonomics, metaphor, constructivist/iterative approach, and visual languages) and their evaluation, existing tools and packages (dialogue models, event-based systems, prototyping), future paradigms, and the social impact of UI. Prerequisite: CMPT 225.
Multimedia systems design, multimedia hardware and software, issues in effectively representing, processing, and retrieving multimedia data such as text, graphics, sound and music, image and video. Prerequisite: CMPT 225.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Jiangchuan Liu |
Jan 6 β Apr 13, 2015: Mon, Wed, 9:30β10:20 a.m.
Jan 6 β Apr 13, 2015: Fri, 9:30β10:20 a.m. |
Burnaby Burnaby |
Covers advanced topics and techniques in computer graphics with a focus on image synthesis. Topics include photorealistic rendering, advanced ray tracing, Monte Carlo methods, photon maps, radiosity, light fields, participating media, as well as tone reproduction. Prerequisite: CMPT 361, MACM 201 and 316. Students with credit for CMPT 451 may not take this course for further credit.
Covers advanced topics in geometric modelling and processing for computer graphics, such as Bezier and B-spline techniques, subdivision curves and surfaces, solid modelling, implicit representation, surface reconstruction, multi-resolution modelling, digital geometry processing (e.g. mesh smoothing, compression, and parameterization), point-based representation, and procedural modelling. Prerequisite: CMPT 361, MACM 316. Students with credit for CMPT 469 between 2003 and 2007 or equivalent may not take this course for further credit.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Richard Zhang |
Jan 6 β Apr 13, 2015: Tue, 2:30β4:20 p.m.
Jan 6 β Apr 13, 2015: Thu, 2:30β3:20 p.m. |
Burnaby Burnaby |
Topics and techniques in animation, including: The history of animation, computers in animation, traditional animation approaches, and computer animation techniques such as geometric modelling, interpolation, camera controls, kinematics, dynamics, constraint-based animation, realistic motion, temporal aliasing, digital effects and post production. Prerequisite: CMPT 361 and MACM 316 or permission of the instructor.
Presents advanced topics in the field of scientific and information visualization. Topics include an introduction to visualization (importance, basic approaches, and existing tools), abstract visualization concepts, human perception, visualization methodology, data representation, 2D and 3D display, interactive visualization, and their use in medical, scientific, and business applications. Prerequisite: CMPT 361, MACM 316.
An introduction to the fundamentals of digital audio, computer music, basic sound synthesis algorithms, and digital audio effects and processing. Topics include concepts of sound and digital audio representation, basic concepts of digital filtering, fundamentals of spectrum analysis, and sound synthesis techniques. Understanding of theoretical concepts will be consolidated through practical programming assignments in Matlab, however there will also be exposure to various freeware real-time audio programming and sound editing environments. Prerequisite: MATH 152 and one of CMPT 125, 126 or 128 (or permission of instructor).
Current topics in computer graphics depending on faculty and student interest. Prerequisite: CMPT 361.
Computing Systems
This course aims to give the student an understanding of what a modern operating system is, and the services it provides. It also discusses some basic issues in operating systems and provides solutions. Topics include multiprogramming, process management, memory management, and file systems. Prerequisite: CMPT 225 and MACM 101.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Jan 6 β Apr 13, 2015: Mon, Wed, Fri, 12:30β1:20 p.m.
|
Surrey |
||
Jan 6 β Apr 13, 2015: Thu, 5:30β8:20 p.m.
|
Burnaby |
Data communication fundamentals (data types, rates, and transmission media). Network architectures for local and wide areas. Communications protocols suitable for various architectures. ISO protocols and internetworking. Performance analysis under various loadings and channel error rates. Prerequisite: CMPT 225, CMPT/ENSC 150 and MATH 151 (MATH 150). MATH 154 or 157 with a grade of at least B+ may be substituted for MATH 151 (MATH 150).
Section | Instructor | Day/Time | Location |
---|---|---|---|
Jan 6 β Apr 13, 2015: Mon, 2:30β4:20 p.m.
Jan 6 β Apr 13, 2015: Wed, 2:30β3:20 p.m. |
Surrey Surrey |
||
Jan 6 β Apr 13, 2015: Tue, 5:30β8:20 p.m.
|
Vancouver |
This course covers the key components of a compiler for a high level programming language. Topics include lexical analysis, parsing, type checking, code generation and optimization. Students will work in teams to design and implement an actual compiler making use of tools such as lex and yacc. Prerequisite: MACM 201, (CMPT 150 or ENSC 215) and CMPT 225.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Jan 6 β Apr 13, 2015: Mon, Wed, Fri, 4:30β5:20 p.m.
|
Surrey |
An introduction to distributed systems: systems consisting of multiple physical components connected over a network. Architectures of such systems, ranging from client-server to peer-to-peer. Distributed systems are analyzed via case studies of real network file systems, replicated systems, sensor networks and peer-to-peer systems. Hands-on experience designing and implementing a complex distributed system. Prerequisite: CMPT 300, 371. Students with credit for CMPT 401 before September 2008 may not take this course for further credit.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Jan 6 β Apr 13, 2015: Mon, 12:30β2:20 p.m.
Jan 6 β Apr 13, 2015: Wed, 12:30β1:20 p.m. |
Surrey Surrey |
The basics of embedded system organization, hardware-software co-design, and programmable chip technologies are studied. Formal models and specification languages for capturing and analyzing the behavior of embedded systems. The design and use of tools for system partitioning and hardware/software co-design implementation, validation, and verification are also studied. Prerequisite: CMPT 250, 300.
This course covers the fundamentals of higher level network functionality such as remote procedure/object calls, name/address resolution, network file systems, network security and high speed connectivity/bridging/switching. Prerequisite: CMPT 300 and 371.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Qianping Gu |
Jan 6 β Apr 13, 2015: Mon, Wed, Fri, 9:30β10:20 a.m.
|
Burnaby |
Current topics in computing systems depending on faculty and student interest. Prerequisite: CMPT 401 or 431.
Current topics in computer hardware depending on faculty and student interest. Prerequisite: CMPT/ENSC 250.
Information Systems
Topics include strategic planning and use of information systems, current and future technologies, technology assimilation, organizational learning, end-user computing, managing projects and people, managing production operations and networks, evaluating performance and benefits, crisis management and disaster recovery, security and control, financial accountability, and proactive management techniques for a changing environment. Prerequisite: CMPT 225.
Logical representations of data records. Data models. Studies of some popular file and database systems. Document retrieval. Other related issues such as database administration, data dictionary and security. Prerequisite: CMPT 225, MACM 101.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Jan 6 β Apr 13, 2015: Mon, Wed, Fri, 10:30β11:20 a.m.
|
Burnaby |
This course focuses on the computer-related problems of information system design and procedures of design implementation. Well-established design methodologies will be discussed, and case studies will be used to illustrate various techniques of system design. Prerequisite: CMPT 275 or 276; CMPT 354.
This course introduces students to the computing science principles underlying computational biology. The emphasis is on the design, analysis and implementation of computational techniques. Possible topics include algorithms for sequence alignment, database searching, gene finding, phylogeny and structure analysis. Prerequisite: CMPT 307. Students with credit for CMPT 341 may not take this course for further credit.
An advanced course on database systems which covers crash recovery, concurrency control, transaction processing, distributed database systems as the core material and a set of selected topics based on the new developments and research interests, such as object-oriented data models and systems, extended relational systems, deductive database systems, and security and integrity. Prerequisite: CMPT 300 and 354.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Ke Wang |
Jan 6 β Apr 13, 2015: Tue, 10:30β11:20 a.m.
Jan 6 β Apr 13, 2015: Thu, 9:30β11:20 a.m. |
Burnaby Burnaby |
|
Jan 6 β Apr 13, 2015: Mon, Fri, 9:30β10:20 a.m.
Jan 6 β Apr 13, 2015: Wed, 9:30β10:20 a.m. |
Surrey Surrey |
Introduction to the essentials of information retrieval and the applications of information retrieval in web search and web information systems. Topics include the major models of information retrieval, similarity search, text content search, link structures and web graphics, web mining and applications, crawling, search engines, and some advanced topics such as spam detection, online advertisement, and fraud detection in online auctions. Prerequisite: CMPT 354.
Current topics in database and information systems depending on faculty and student interest. Prerequisite: CMPT 354.
This course examines: two-tier/multi-tier client/server architectures; the architecture of a Web-based information system; web servers/browser; programming/scripting tools for clients and servers; database access; transport of programming objects; messaging systems; security; and applications (such as e-commerce and on-line learning). Prerequisite: CMPT 354.
Web service based systems are fundamentally different from traditional software systems. The conceptual and methodological differences between a standard software development process and the development of a web service based information system. The technology involved during the construction of their own web service based application in an extensive project. Prerequisite: CMPT 371.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Jan 6 β Apr 13, 2015: Mon, Wed, Fri, 10:30β11:20 a.m.
|
Surrey |
Programming Languages and Software
Survey of modern software development methodology. Several software development process models will be examined, as will the general principles behind such models. Provides experience with different programming paradigms and their advantages and disadvantages during software development. Prerequisite: CMPT 276 or 275. Students with credit for CMPT 475 may not complete this course for further credit.
Abstraction principles and formalization techniques for modelling software systems in early design phases. Design is a creative activity calling for abstract models that facilitate reasoning about the key system attributes to ensure that these attributes are properly established prior to actually building a system. The focus is on specification and validation techniques rather than on formal verification. Prerequisite: MACM 101, 201. Recommended: CMPT 275.
Various concepts and principles underlying the design and use of modern programming languages are considered in the context of procedural, object-oriented, functional and logic programming languages. Topics include data and control structuring constructs, facilities for modularity and data abstraction, polymorphism, syntax, and formal semantics. Prerequisite: CMPT 225, MACM 101.
This course considers modelling and programming techniques appropriate for symbolic data domains such as mathematical expressions, logical formulas, grammars and programming languages. Topics include recursive and functional programming style, grammar-based data abstraction, simplification and reduction transformations, conversions to canonical form, environment data structures and interpreters, metaprogramming, pattern matching and theorem proving. Prerequisite: CMPT 225; MACM 101.
Factors in software quality include functionality, reliability, usability, efficiency, maintainability, and portability. Techniques for assessing the quality of software with respect to such factors, and methods for improving the quality of both software products and software development processes. Prerequisite: CMPT 373.
Students will study in-depth the techniques, tools and standards needed in the management of software development. Topics will include software process and quality standards, life cycle models, requirements specification issues, project estimation, planning and tracking, project management tools, team dynamics and management, configuration and change management techniques and tools, metrics, quality assurance and test techniques, professional and legal issues. Prerequisite: CMPT 275 or 276 and 15 units of upper division courses. Recommended: co-op experience. Students with credit for CMPT 373 may not take this course for further credit.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Jan 6 β Apr 13, 2015: Thu, 5:30β8:20 p.m.
|
Vancouver |
Introduces, at an accessible level, a formal framework for symbolic model checking, one of the most important verification methods. The techniques are illustrated with examples of verification of reactive systems and communication protocols. Students learn to work with a model checking tool. Prerequisite: CMPT 275 or 276.
Current topics in programming languages depending on faculty and student interest. Prerequisite: CMPT 383.
Theoretical Computing Science
Analysis and design of data structures for lists, sets, trees, dictionaries, and priority queues. A selection of topics chosen from sorting, memory management, graphs and graph algorithms. Prerequisite: CMPT 225, MACM 201, MATH 151 (or MATH 150), and MATH 232 or 240.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Pavol Hell |
Jan 6 β Apr 13, 2015: Tue, 2:30β4:20 p.m.
Jan 6 β Apr 13, 2015: Thu, 2:30β3:20 p.m. |
Burnaby Burnaby |
This course introduces students to formal models of computations such as Turing machines and RAMs. Notions of tractability and intractability are discusses both with respect to computability and resource requirements. The relationship of these concepts to logic is also covered. Prerequisite: MACM 201.
The main cryptographic tools and primitives, their use in cryptographic applications; security and weaknesses of the current protocols. The notion of security, standard encryption schemes, digital signatures, zero-knowledge, selected other topics. Prerequisite: MACM 201. CMPT 307 and 308 are recommended.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Andrei Bulatov |
Jan 6 β Apr 13, 2015: Mon, Wed, Fri, 3:30β4:20 p.m.
|
Burnaby |
Models of computation, methods of algorithm design; complexity of algorithms; algorithms on graphs, NP-completeness, approximation algorithms, selected topics. Prerequisite: CMPT 307.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Petra Berenbrink |
Jan 6 β Apr 13, 2015: Mon, Wed, Fri, 10:30β11:20 a.m.
|
Burnaby |
Machine models and their equivalences, complexity classes, separation theorems, reductions, Cook's theorem, NP-completeness, the polynomial time hierarchy, boolean circuit models and parallel complexity theory, other topics of interest to the students and instructor. Prerequisite: CMPT 307.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Valentine Kabanets |
Jan 6 β Apr 13, 2015: Tue, 1:30β2:20 p.m.
Jan 6 β Apr 13, 2015: Thu, 12:30β2:20 p.m. |
Burnaby Burnaby |
Current topics in theoretical computing science depending on faculty and student interest. Prerequisite: CMPT 307.
Languages, grammars, automata and their applications to natural and formal language processing. Prerequisite: MACM 201. Quantitative.
Table II β Application Courses
Currently no courses.
Table III β Computing Mathematics Courses
A presentation of the problems commonly arising in numerical analysis and scientific computing and the basic methods for their solutions. Prerequisite: MATH 152 or 155 or 158, and MATH 232 or 240, and computing experience. Quantitative.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Benjamin Adcock |
Jan 6 β Apr 13, 2015: Mon, Wed, Fri, 12:30β1:20 p.m.
|
Burnaby |
|
D101 |
Jan 6 β Apr 13, 2015: Tue, 9:30β10:20 a.m.
|
Burnaby |
|
D102 |
Jan 6 β Apr 13, 2015: Tue, 10:30β11:20 a.m.
|
Burnaby |
|
D103 |
Jan 6 β Apr 13, 2015: Tue, 11:30 a.m.β12:20 p.m.
|
Burnaby |
|
D104 |
Jan 6 β Apr 13, 2015: Thu, 9:30β10:20 a.m.
|
Burnaby |
|
D105 |
Jan 6 β Apr 13, 2015: Thu, 10:30β11:20 a.m.
|
Burnaby |
|
D106 |
Jan 6 β Apr 13, 2015: Thu, 11:30 a.m.β12:20 p.m.
|
Burnaby |
A first course in computer algebra also called symbolic computation. It covers data-structures and algorithms for mathematical objects, including polynomials, general mathematical formulae, long integer arithmetic, polynomial greatest common divisors, the Risch integration algorithm. Other topics include symbolic differentiation, simplification of formulae, and polynomial factorization. Students will learn Maple for use on assignments. Prerequisite: CMPT 307 or MATH 332 or MATH 340. Quantitative.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Michael Monagan |
Jan 6 β Apr 13, 2015: Mon, 12:30β1:20 p.m.
Jan 6 β Apr 13, 2015: Thu, 12:30β2:20 p.m. |
Burnaby Burnaby |
|
D101 |
Jan 6 β Apr 13, 2015: Mon, 1:30β2:20 p.m.
|
Burnaby |
An introduction to the subject of modern cryptography. Classical methods for cryptography and how to break them, the data encryption standard (DES), the advanced encryption standard (AES), the RSA and ElGammal public key cryptosystems, digital signatures, secure hash functions and pseudo-random number generation. Algorithms for computing with long integers including the use of probabilistic algorithms. Prerequisite: (CMPT 201 or 225) and one of (MATH 340 or 332 or 342); or CMPT 405. Students with credit for MACM 498 between Fall 2003 and Spring 2006 may not take this course for further credit. Quantitative.
The integers and mathematical proof. Relations and modular arithmetic. Rings and fields, polynomial rings, the Euclidean algorithm. The complex numbers and the fundamental theorem of algebra. Construction of finite fields, primitive elements in finite fields, and their application. Prerequisite: MATH 240 (or MATH 232 with a grade of at least B). Students with credit for MATH 332 may not take this course for further credit. Quantitative.
Structures and algorithms, generating elementary combinatorial objects, counting (integer partitions, set partitions, Catalan families), backtracking algorithms, branch and bound, heuristic search algorithms. Prerequisite: MACM 201 (with a grade of at least B-). Recommended: knowledge of a programming language. Quantitative.
Section | Instructor | Day/Time | Location |
---|---|---|---|
Cedric Chauve |
Jan 6 β Apr 13, 2015: Mon, 2:30β3:20 p.m.
Jan 6 β Apr 13, 2015: Thu, 2:30β4:20 p.m. |
Burnaby Burnaby |
|
D101 |
Jan 6 β Apr 13, 2015: Tue, 4:30β5:20 p.m.
|
Burnaby |
Other Courses Per Department Approval
The following courses may be counted in one of the above tables with permission of the school.
Special topics in computing science at the 300 level. Topics that are of current interest or are not covered in regular curriculum will be offered from time to time depending on availability of faculty and student interest. Prerequisite: CMPT 225.
To be individually arranged. Prerequisite: Permission of the department.
Independent study in topics selected in consultation with the supervising instructor(s) that are not covered by existing course offerings. Students must submit a proposal to the undergraduate chair, including the name and signature of the supervising faculty member(s). The proposal must include details of the material to be covered and the work to be submitted. Prerequisite: Students must have completed 90 units, including 15 units of upper division CMPT courses, and have a GPA of at least 3.00. The proposal must be submitted to the undergraduate chair at least 15 days in advance of the term. The proposal must be signed by the supervisor(s) and the undergraduate chair.
Students will select one project to be completed in their final year of study. Each student must complete a project report and make a project presentation. The project may include: a research survey, a project implementation, a research paper/report. Prerequisite: Submission of a satisfactory capstone project proposal.
Students must submit a proposal to the Undergraduate Chair, including the name and signature of the supervising faculty member(s). Students must complete a project report and make a project presentation. This course can satisfy the research project requirements for Computing Science honours students. Prerequisite: Students must have completed 90 units, including 15 units of upper division CMPT courses, and have a GPA of at least 3.00. The proposal must be submitted to the Undergraduate Chair at least 15 days in advance of the term. The proposal must be signed by the supervisor(s) and the undergraduate chair.
Elective Courses
In addition to the courses listed above, students should consult an to plan the remaining required elective courses.
Residency Requirements and Transfer Credit
The University’s residency requirement stipulates that, in most cases, total transfer and course challenge credit may not exceed 60 units, and may not include more than 15 as upper division work.
- At least half of the program's total units must be earned through Ά‘ΟγΤ°AV study
- At least two thirds of the program's total upper division units must be earned through Ά‘ΟγΤ°AV study
- At least two thirds of the upper division units in the courses of a school offering (or joint offering must be earned through that school at Ά‘ΟγΤ°AV
For information regarding transfer, consult an
Co-operative Education and Work Experience
All computing science students are strongly encouraged to explore the opportunities that Work Integrated Learning (WIL) can offer them. Please contact a during your first year of studies to ensure that you have all of the necessary courses and information to help plan for a successful co-op experience.