¶¡ÏãÔ°AV

i Please note:  

To view the current calendar, go to

¶¡ÏãÔ°AV Calendar | Fall 2015

Financial Engineering

Graduate Diploma

The Graduate Diploma in Financial Engineering is designed for graduate students in the Department of Statistics and Actuarial Science who would like to develop applied skills in the field of finance, and for students in the M.Sc. Finance program seeking to deepen their theoretical understanding of relevant statistical and mathematical concepts so as to prepare students for careers in quantitative finance.

Program Requirements

Students must complete a total of 22 units of graduate coursework, including:

BUS 814 - Derivative Securities I (3)

An introductory course in derivative securities that includes pricing as well as the use of derivative securities in portfolio management and structured transactions.

Section Instructor Day/Time Location
Avi Bick
TBD
BUS 818 - Derivative Securities II (3)

Extensions of advanced topics beyond those covered BUS 802 and 805. Prerequisite: BUS 814 (co-requisite acceptable).

Minimally one (1) of the following courses:

ACMA 815 - Rate of Return Models (2)

An introduction to stochastic models for the rate of return. Time series. Stochastic differential equations. Covariance equivalence principle. Applications. Prerequisite: Permission of the Department. Students with credit for ACMA 820 may not take this course for further credit.

ACMA 820 - Stochastic Analysis of Insurance Portfolios (4)

Life insurance models. Interest rate models for life insurance: time series, stochastic differential equations, estimation. Portfolios of identical policies. Diversified portfolios. Prerequisite: ACMA 320.

Minimally two (2) of the following courses:

ACMA 816 - Stochastic Claims Processes (2)

Study the distribution of aggregate claims and introduce stochastic claims reserving methods in insurance. Individual versus collective models. Standard distribution-free methods. Other models. Prerequisite: Permission of the Department. Students with credit for ACMA 821 may not take this course for further credit.

STAT 830 - Statistical Theory I (4)

The statistical theory that supports modern statistical methodologies. Distribution theory, methods for construction of tests, estimators, and confidence intervals with special attention to likelihood and Bayesian methods. Properties of the procedures including large sample theory will be considered. Consistency and asymptotic normality for maximum likelihood and related methods (e.g., estimating equations, quasi-likelihood), as well as hypothesis testing and p-values. Additional topics may include: nonparametric models, the bootstrap, causal inference, and simulation. Prerequisite: STAT 450 or permission of the instructor. Students with credit for STAT 801 may not take this course for further credit.

Section Instructor Day/Time Location
Steven Thompson
Sep 8 – Dec 7, 2015: Tue, Thu, 11:30 a.m.–1:20 p.m.
Burnaby
STAT 831 - Statistical Theory II (4)

Advanced mathematical statistics for PhD students. Topics in probability theory including densities, expectation and random vectors and matrices are covered. The theory of point estimation including unbiased and Bayesian estimation, conditional distributions, variance bounds and information. The theoretical framework of hypothesis testing is covered. Additional topics that may be covered include modes of convergence, central limit theorems for averages and medians, large sample theory and empirical processes. Prerequisite: STAT 830 or permission from the instructor.

STAT 832 - Applied Probability Models (4)

Application of stochastic processes: queues, inventories, counters, etc. Reliability and life testing. Point processes. Simulation. Students with credit for STAT 870 may not take this course for further credit.

STAT 843 - Functional Data Analysis (4)

An introduction to smoothing and modelling of functional data. Basis expansion methods, functional regression models and derivative estimation are covered. Prerequisite: STAT 830 or permission of the instructor.

STAT 853 - Applications of Statistical Computing (4)

An introduction to computational methods in applied statistics. Topics can include: the bootstrap, Markov Chain Monte Carlo, EM algorithm, as well as optimization and matrix decompositions. Statistical applications will include frequentist and Bayesian model estimation, as well as inference for complex models. The theoretical motivation and application of computational methods will be addressed. Prerequisite: STAT 830 or equivalent or permission of instructor.

Minimally one (1) of the following courses:

BUS 805 - Financial Economics II (3)

A survey of asset pricing models including linear factor models, CAPM, and arbitrage models. Multi-period consumption, portfolio choice, and asset pricing models; continuous-time consumption and portfolio choice; behavioral finance and asset pricing; asset pricing with differential information.

BUS 810 - Fixed Income Security Analysis and Portfolio Management (3)

The term structure of interest rates, fixed income returns, yield-spread analysis, sources of risk in fixed income securities, and embedded options.

Section Instructor Day/Time Location
Donald MacNeil
TBD
Donald MacNeil
TBD
BUS 857 - Numerical Methods (3)

Computational tools for financial analysis, financial engineering and risk management.

BUS 864 - Credit Risk Management (3)

Credit risk management with emphasis on portfolio models, including probability of default and loss given default models, credit capital allocation, active portfolio management, credit derivatives, and structured transactions.

BUS 865 - Market Risk Management (3)

Value at risk, advanced market risk models, statistical models, stress testing, scenario analysis, and risk-adjusted performance measurement.

and one or more elective courses from the above lists to meet the overall minimum required units.

Students may apply some courses completed for one credential towards this credential as outlined in . Normally this would mean that students must complete minimally four (4) additional courses to be awarded this diploma beyond their MSc.

For those with limited background in finance/economics, preparatory courses offered by the Beedie School of Business may be required.

Academic Requirements within the Graduate General Regulations

All graduate students must satisfy the academic requirements that are specified in the , as well as the specific requirements for the program in which they are enrolled, as shown above.