¶¡ÏãÔ°AV

i Please note:  

To view the current calendar, go to

| ¶¡ÏãÔ°AV Calendar | Summer 2014

Computing Science Dual Degree Major

Bachelor of Science

The school offers a dual program with Zhejiang University (ZJU) in China that leads to the acquisition of two bachelor’s degrees – a bachelor of science from ¶¡ÏãÔ°AV (¶¡ÏãÔ°AV) and a bachelor of engineering from Zhejiang University.

¶¡ÏãÔ°AV Requirements

This is a direct admission program. ¶¡ÏãÔ°AV applicants indicate their interest on the Application for Undergraduate ¶¡ÏãÔ°AV to ¶¡ÏãÔ°AV by selecting the “BSc CMPT (¶¡ÏãÔ°AV-Zhejiang University Dual Degree)” under Program/Plan in the School of Computing Science, Faculty of Applied Sciences.

¶¡ÏãÔ°AV is competitive and enrolment is limited.

The program begins each fall term.  Applicants must meet the standard requirements for admission to ¶¡ÏãÔ°AV and the School of Computing Science.  Concurrent to the ¶¡ÏãÔ°AV admission application, students must also submit a “Statement of Interest” to the ¶¡ÏãÔ°AV-Zhejiang University ¶¡ÏãÔ°AVs Committee, School of Computing Science.  Applicants will be selected based on their “Statement of Interest” and their academic standing.

For more details, consult an Applied Sciences advisor.

Continuation Requirements

Students who do not maintain at least a 2.40 cumulative grade point average (CGPA), will be placed on the school’s probation. Courses available to probationary students may be limited. Each term, these students must consult an advisor prior to enrolment and must achieve either a term 2.40 term GPA or an improved CGPA. Reinstatement from probationary standing occurs when the CGPA improves to 2.40 or better and is maintained.

Students must obtain permission from the department if they wish to complete, for further unit, any course that is a prerequisite for a course the student has already completed with a grade of C- or higher.

Prerequisite Grade Requirement

Computing science course entry requires a grade of C- or better in each prerequisite course. A minimum 2.40 cumulative grade point average is required for upper division computing courses.

Program Requirements

For specific information about the program and course plans, consult an Applied Sciences Advisor.

¶¡ÏãÔ°AV Students

Prep / Year 0

Students with no previous knowledge of Chinese languages will complete a five year curriculum with customized intensive Mandarin courses at ¶¡ÏãÔ°AV in addition to some foundational courses in the Prep/0th year, and Chinese immersion in the summer.

¶¡ÏãÔ°AV and Zhejiang University Students

Year 1 and Year 2

Zhejiang University students complete lower division courses required by the Dual Degree Program curriculum at Zhejiang University (equivalent of 60 ¶¡ÏãÔ°AV units).

¶¡ÏãÔ°AV students complete lower division courses required by the Dual Degree Program curriculum at ¶¡ÏãÔ°AV (Year 0) and Zhejiang University (Year 1 and 2) (equivalent of at least 60 ¶¡ÏãÔ°AV units).

Year 3 and Year 4

All ¶¡ÏãÔ°AV and Zhejiang University students complete 60 units at ¶¡ÏãÔ°AV (including a minimum of 45 upper division units).

Core courses required for ¶¡ÏãÔ°AV students in Prep/Year 0 and courses for all students required by Zhejiang University in Years 1 and 2 are availabe from an Applied Sciences Advisor.

Dual Degree Credential

Students will receive two degrees, one each from ¶¡ÏãÔ°AV and Zhejiang University after completing lower division courses at Zhejiang University and upper division courses at ¶¡ÏãÔ°AV.

All students complete the following ¶¡ÏãÔ°AV upper division courses

CMPT 300 - Operating Systems I (3)

This course aims to give the student an understanding of what a modern operating system is, and the services it provides. It also discusses some basic issues in operating systems and provides solutions. Topics include multiprogramming, process management, memory management, and file systems. Prerequisite: CMPT 225 and MACM 101.

CMPT 307 - Data Structures and Algorithms (3)

Analysis and design of data structures for lists, sets, trees, dictionaries, and priority queues. A selection of topics chosen from sorting, memory management, graphs and graph algorithms. Prerequisite: CMPT 225, MACM 201, MATH 151 (or MATH 150), and MATH 232 or 240.

CMPT 320 - Social Implications - Computerized Society (3)

An examination of social processes that are being automated and implications for good and evil, that may be entailed in the automation of procedures by which goods and services are allocated. Examination of what are dehumanizing and humanizing parts of systems and how systems can be designed to have a humanizing effect. Prerequisite: A CMPT course and 45 units. Breadth-Science.

CMPT 354 - Database Systems I (3)

Logical representations of data records. Data models. Studies of some popular file and database systems. Document retrieval. Other related issues such as database administration, data dictionary and security. Prerequisite: CMPT 225, MACM 101.

CMPT 371 - Data Communications and Networking (3)

Data communication fundamentals (data types, rates, and transmission media). Network architectures for local and wide areas. Communications protocols suitable for various architectures. ISO protocols and internetworking. Performance analysis under various loadings and channel error rates. Prerequisite: CMPT 225, CMPT/ENSC 150 and MATH 151 (MATH 150). MATH 154 or 157 with a grade of at least B+ may be substituted for MATH 151 (MATH 150).

CMPT 376W - Technical Writing and Group Dynamics (3)

Covers professional writing in computing science, including format conventions and technical reports. Examines group dynamics, including team leadership, dispute resolution and collaborative writing. Also covers research methods. Prerequisite: Any lower-division W course. Co-requisite: CMPT 275. Students with credit for CMPT 376 may not take this course for further credit. Writing.

MACM 316 - Numerical Analysis I (3)

A presentation of the problems commonly arising in numerical analysis and scientific computing and the basic methods for their solutions. Prerequisite: MATH 152 or 155 or 158, and MATH 232 or 240, and computing experience. Quantitative.

two 300 division CMPT courses from two different Table I computing science concentrations as specified here: artificial intelligence, computer graphics and multimedia, or programming languages and software (See Table I computing science concentrations below)

four 400 division or higher CMPT courses from Table I Computing Science Concentrations

CMPT 497 - Dual Degree Program Capstone Project (6)

Students will select one project to be completed in their final year of study. Each student must complete a project report and make a project presentation. The project may include: a research survey, a project implementation, a research paper/report. Prerequisite: Submission of a satisfactory capstone project proposal.

Table I –

Artificial Intelligence

CMPT 310 - Artificial Intelligence Survey (3)

Provides a unified discussion of the fundamental approaches to the problems in artificial intelligence. The topics considered are: representational typology and search methods; game playing, heuristic programming; pattern recognition and classification; theorem-proving; question-answering systems; natural language understanding; computer vision. Prerequisite: CMPT 225 and MACM 101. Students with credit for CMPT 410 may not take this course for further credit.

CMPT 340 - Biomedical Computing (3)

The principles involved in using computers for data acquisition, real-time processing, pattern recognition and experimental control in biology and medicine will be developed. The use of large data bases and simulation will be explored. Prerequisite: Completion of 60 units including CMPT 125, 126 or 128 (or 102 with a grade of B or higher).

CMPT 411 - Knowledge Representation (3)

Formal and foundational issues dealing with the representation of knowledge in artificial intelligence systems are covered. Questions of semantics, incompleteness, non-monotonicity and others will be examined. As well, particular approaches, such as procedural or semantic network, may be discussed. Prerequisite: Completion of nine units in Computing Science upper division courses or, in exceptional cases, permission of the instructor.

CMPT 412 - Computational Vision (3)

Computational approaches to image understanding will be discussed in relation to theories about the operation of the human visual system and with respect to practical applications in robotics. Topics will include edge detection, shape from shading, stereopsis, optical flow, Fourier methods, gradient space, three-dimensional object representation and constraint satisfaction. Prerequisite: MATH 152, and nine units in Computing upper division courses or permission of the instructor.

CMPT 413 - Computational Linguistics (3)

This course examines the theoretical and applied problems of constructing and modelling systems, which aim to extract and represent the meaning of natural language sentences or of whole discourses, but drawing on contributions from the fields of linguistics, cognitive psychology, artificial intelligence and computing science. Prerequisite: Completion of nine units in Computing Science upper division courses or, in exceptional cases, permission of the instructor.

CMPT 414 - Model-Based Computer Vision (3)

This course covers various topics in computer vision with the emphasis on the model-based approach. Main subjects include 2-D and 3-D representations, matching, constraint relaxation, model-based vision systems. State-of-the-art robot vision systems will be used extensively as study cases. The solid modelling and CAD aspects of this course should also interest students of computer graphics. Prerequisite: MATH 152 and nine units in CMPT upper division courses, or permission of the instructor.

CMPT 417 - Intelligent Systems (3)

Intelligent Systems using modern constraint programming and heuristic search methods. A survey of this rapidly advancing technology as applied to scheduling, planning, design and configuration. An introduction to constraint programming, heuristic search, constructive (backtrack) search, iterative improvement (local) search, mixed-initiative systems and combinatorial optimization. Prerequisite: CMPT 225.

CMPT 418 - Computational Cognitive Architecture (3)

Computationally-oriented theories of human cognitive architecture are explored, beginning with neurologically inspired (neural network) models of "low-level" brain processes, and progressing upwards to higher-level symbolic processing, of the kind that occurs in rule-following and problem solving. Arguments concerning the need for modular processing and combinatorially adequate forms of mental representation are examined at length. Prerequisite: CMPT 225. Recommended: CMPT 310.

CMPT 419 - Special Topics in Artificial Intelligence (3)

Current topics in artificial intelligence depending on faculty and student interest.

Computer Graphics and Multimedia

CMPT 361 - Introduction to Computer Graphics (3)

This course provides an introduction to the fundamentals of computer graphics. Topics include graphics display and interaction hardware, basic algorithms for 2D primitives, anti-aliasing, 2D and 3D geometrical transformations, 3D projections/viewing, Polygonal and hierarchical models, hidden-surface removal, basic rendering techniques (color, shading, raytracing, radiosity), and interaction techniques. Prerequisite: CMPT 225 and MATH 232 or 240.

CMPT 363 - User Interface Design (3)

This course provides a comprehensive study of user interface design. Topics include: goals and principles of UI design (systems engineering and human factors), historical perspective, current paradigms (widget-based, mental model, graphic design, ergonomics, metaphor, constructivist/iterative approach, and visual languages) and their evaluation, existing tools and packages (dialogue models, event-based systems, prototyping), future paradigms, and the social impact of UI. Prerequisite: CMPT 225.

CMPT 365 - Multimedia Systems (3)

Multimedia systems design, multimedia hardware and software, issues in effectively representing, processing, and retrieving multimedia data such as text, graphics, sound and music, image and video. Prerequisite: CMPT 225.

CMPT 461 - Image Synthesis (3)

Covers advanced topics and techniques in computer graphics with a focus on image synthesis. Topics include photorealistic rendering, advanced ray tracing, Monte Carlo methods, photon maps, radiosity, light fields, participating media, as well as tone reproduction. Prerequisite: CMPT 361, MACM 201 and 316. Students with credit for CMPT 451 may not take this course for further credit.

CMPT 464 - Geometric Modelling in Computer Graphics (3)

Covers advanced topics in geometric modelling and processing for computer graphics, such as Bezier and B-spline techniques, subdivision curves and surfaces, solid modelling, implicit representation, surface reconstruction, multi-resolution modelling, digital geometry processing (e.g. mesh smoothing, compression, and parameterization), point-based representation, and procedural modelling. Prerequisite: CMPT 361, MACM 316. Students with credit for CMPT 469 between 2003 and 2007 or equivalent may not take this course for further credit.

CMPT 466 - Animation (3)

Topics and techniques in animation, including: The history of animation, computers in animation, traditional animation approaches, and computer animation techniques such as geometric modelling, interpolation, camera controls, kinematics, dynamics, constraint-based animation, realistic motion, temporal aliasing, digital effects and post production. Prerequisite: CMPT 361 and MACM 316 or permission of the instructor.

CMPT 467 - Visualization (3)

Presents advanced topics in the field of scientific and information visualization. Topics include an introduction to visualization (importance, basic approaches, and existing tools), abstract visualization concepts, human perception, visualization methodology, data representation, 2D and 3D display, interactive visualization, and their use in medical, scientific, and business applications. Prerequisite: CMPT 361, MACM 316.

CMPT 468 - Introduction to Computer Music and Sound Synthesis (3)

An introduction to the fundamentals of digital audio, computer music, basic sound synthesis algorithms, and digital audio effects and processing. Topics include concepts of sound and digital audio representation, basic concepts of digital filtering, fundamentals of spectrum analysis, and sound synthesis techniques. Understanding of theoretical concepts will be consolidated through practical programming assignments in Matlab, however there will also be exposure to various freeware real-time audio programming and sound editing environments. Prerequisite: MATH 152 and one of CMPT 125, 126 or 128 (or permission of instructor).

CMPT 469 - Special Topics in Computer Graphics (3)

Current topics in computer graphics depending on faculty and student interest. Prerequisite: CMPT 361.

Computing Systems

CMPT 300 - Operating Systems I (3)

This course aims to give the student an understanding of what a modern operating system is, and the services it provides. It also discusses some basic issues in operating systems and provides solutions. Topics include multiprogramming, process management, memory management, and file systems. Prerequisite: CMPT 225 and MACM 101.

CMPT 305 - Computer Simulation and Modelling (3)

This course is an introduction to the modelling, analysis, and computer simulation of complex systems. Topics include analytic modelling, discrete event simulation, experimental design, random number generation, and statistical analysis. Prerequisite: CMPT 225, MACM 101, STAT 270.

CMPT 371 - Data Communications and Networking (3)

Data communication fundamentals (data types, rates, and transmission media). Network architectures for local and wide areas. Communications protocols suitable for various architectures. ISO protocols and internetworking. Performance analysis under various loadings and channel error rates. Prerequisite: CMPT 225, CMPT/ENSC 150 and MATH 151 (MATH 150). MATH 154 or 157 with a grade of at least B+ may be substituted for MATH 151 (MATH 150).

CMPT 379 - Principles of Compiler Design (3)

This course covers the key components of a compiler for a high level programming language. Topics include lexical analysis, parsing, type checking, code generation and optimization. Students will work in teams to design and implement an actual compiler making use of tools such as lex and yacc. Prerequisite: MACM 201, (CMPT 150 or ENSC 215) and CMPT 225.

CMPT 431 - Distributed Systems (3)

An introduction to distributed systems: systems consisting of multiple physical components connected over a network. Architectures of such systems, ranging from client-server to peer-to-peer. Distributed systems are analyzed via case studies of real network file systems, replicated systems, sensor networks and peer-to-peer systems. Hands-on experience designing and implementing a complex distributed system. Prerequisite: CMPT 300, 371. Students with credit for CMPT 401 before September 2008 may not take this course for further credit.

CMPT 433 - Embedded Systems (3)

The basics of embedded system organization, hardware-software co-design, and programmable chip technologies are studied. Formal models and specification languages for capturing and analyzing the behavior of embedded systems. The design and use of tools for system partitioning and hardware/software co-design implementation, validation, and verification are also studied. Prerequisite: CMPT 250, 300.

CMPT 471 - Networking II (3)

This course covers the fundamentals of higher level network functionality such as remote procedure/object calls, name/address resolution, network file systems, network security and high speed connectivity/bridging/switching. Prerequisite: CMPT 300 and 371.

CMPT 479 - Special Topics in Computing Systems (3)

Current topics in computing systems depending on faculty and student interest. Prerequisite: CMPT 401 or 431.

CMPT 499 - Special Topics in Computer Hardware (3)

Current topics in computer hardware depending on faculty and student interest. Prerequisite: CMPT/ENSC 250.

Information Systems

CMPT 301 - Information Systems Management (3)

Topics include strategic planning and use of information systems, current and future technologies, technology assimilation, organizational learning, end-user computing, managing projects and people, managing production operations and networks, evaluating performance and benefits, crisis management and disaster recovery, security and control, financial accountability, and proactive management techniques for a changing environment. Prerequisite: CMPT 225.

CMPT 354 - Database Systems I (3)

Logical representations of data records. Data models. Studies of some popular file and database systems. Document retrieval. Other related issues such as database administration, data dictionary and security. Prerequisite: CMPT 225, MACM 101.

CMPT 370 - Information System Design (3)

This course focuses on the computer-related problems of information system design and procedures of design implementation. Well-established design methodologies will be discussed, and case studies will be used to illustrate various techniques of system design. Prerequisite: CMPT 275 or 276; CMPT 354.

CMPT 441 - Computational Biology (3)

This course introduces students to the computing science principles underlying computational biology. The emphasis is on the design, analysis and implementation of computational techniques. Possible topics include algorithms for sequence alignment, database searching, gene finding, phylogeny and structure analysis. Prerequisite: CMPT 307. Students with credit for CMPT 341 may not take this course for further credit.

CMPT 454 - Database Systems II (3)

An advanced course on database systems which covers crash recovery, concurrency control, transaction processing, distributed database systems as the core material and a set of selected topics based on the new developments and research interests, such as object-oriented data models and systems, extended relational systems, deductive database systems, and security and integrity. Prerequisite: CMPT 300 and 354.

CMPT 456 - Information Retrieval and Web Search (3)

Introduction to the essentials of information retrieval and the applications of information retrieval in web search and web information systems. Topics include the major models of information retrieval, similarity search, text content search, link structures and web graphics, web mining and applications, crawling, search engines, and some advanced topics such as spam detection, online advertisement, and fraud detection in online auctions. Prerequisite: CMPT 354.

CMPT 459 - Special Topics in Database Systems (3)

Current topics in database and information systems depending on faculty and student interest. Prerequisite: CMPT 354.

CMPT 470 - Web-based Information Systems (3)

This course examines: two-tier/multi-tier client/server architectures; the architecture of a Web-based information system; web servers/browser; programming/scripting tools for clients and servers; database access; transport of programming objects; messaging systems; security; and applications (such as e-commerce and on-line learning). Prerequisite: CMPT 354.

CMPT 474 - Web Systems Architecture (3)

Web service based systems are fundamentally different from traditional software systems. The conceptual and methodological differences between a standard software development process and the development of a web service based information system. The technology involved during the construction of their own web service based application in an extensive project. Prerequisite: CMPT 371.

Programming Languages and Software

CMPT 373 - Software Development Methods (3)

Survey of modern software development methodology. Several software development process models will be examined, as will the general principles behind such models. Provides experience with different programming paradigms and their advantages and disadvantages during software development. Prerequisite: CMPT 276 or 275. Students with credit for CMPT 475 may not complete this course for further credit.

CMPT 375 - Mathematical Foundations of Software Technology (3)

Abstraction principles and formalization techniques for modelling software systems in early design phases. Design is a creative activity calling for abstract models that facilitate reasoning about the key system attributes to ensure that these attributes are properly established prior to actually building a system. The focus is on specification and validation techniques rather than on formal verification. Prerequisite: MACM 101, 201. Recommended: CMPT 275.

CMPT 383 - Comparative Programming Languages (3)

Various concepts and principles underlying the design and use of modern programming languages are considered in the context of procedural, object-oriented, functional and logic programming languages. Topics include data and control structuring constructs, facilities for modularity and data abstraction, polymorphism, syntax, and formal semantics. Prerequisite: CMPT 225, MACM 101.

CMPT 384 - Symbolic Computing (3)

This course considers modelling and programming techniques appropriate for symbolic data domains such as mathematical expressions, logical formulas, grammars and programming languages. Topics include recursive and functional programming style, grammar-based data abstraction, simplification and reduction transformations, conversions to canonical form, environment data structures and interpreters, metaprogramming, pattern matching and theorem proving. Prerequisite: CMPT 225; MACM 101.

CMPT 473 - Software Quality Assurance (3)

Factors in software quality include functionality, reliability, usability, efficiency, maintainability, and portability. Techniques for assessing the quality of software with respect to such factors, and methods for improving the quality of both software products and software development processes. Prerequisite: CMPT 373.

CMPT 475 - Software Engineering II (3)

Students will study in-depth the techniques, tools and standards needed in the management of software development. Topics will include software process and quality standards, life cycle models, requirements specification issues, project estimation, planning and tracking, project management tools, team dynamics and management, configuration and change management techniques and tools, metrics, quality assurance and test techniques, professional and legal issues. Prerequisite: CMPT 275 or 276 and 15 units of upper division courses. Recommended: co-op experience. Students with credit for CMPT 373 may not take this course for further credit.

CMPT 477 - Introduction to Formal Verification (3)

Introduces, at an accessible level, a formal framework for symbolic model checking, one of the most important verification methods. The techniques are illustrated with examples of verification of reactive systems and communication protocols. Students learn to work with a model checking tool. Prerequisite: CMPT 275 or 276.

CMPT 489 - Special Topics in Programming Language (3)

Current topics in programming languages depending on faculty and student interest. Prerequisite: CMPT 383.

Theoretical Computing Science

CMPT 307 - Data Structures and Algorithms (3)

Analysis and design of data structures for lists, sets, trees, dictionaries, and priority queues. A selection of topics chosen from sorting, memory management, graphs and graph algorithms. Prerequisite: CMPT 225, MACM 201, MATH 151 (or MATH 150), and MATH 232 or 240.

CMPT 308 - Computability and Complexity (3)

This course introduces students to formal models of computations such as Turing machines and RAMs. Notions of tractability and intractability are discusses both with respect to computability and resource requirements. The relationship of these concepts to logic is also covered. Prerequisite: MACM 201.

CMPT 404 - Cryptography and Cryptographic Protocols (3)

The main cryptographic tools and primitives, their use in cryptographic applications; security and weaknesses of the current protocols. The notion of security, standard encryption schemes, digital signatures, zero-knowledge, selected other topics. Prerequisite: MACM 201. CMPT 307 and 308 are recommended.

CMPT 405 - Design and Analysis of Computing Algorithms (3)

Models of computation, methods of algorithm design; complexity of algorithms; algorithms on graphs, NP-completeness, approximation algorithms, selected topics. Prerequisite: CMPT 307.

CMPT 407 - Computational Complexity (3)

Machine models and their equivalences, complexity classes, separation theorems, reductions, Cook's theorem, NP-completeness, the polynomial time hierarchy, boolean circuit models and parallel complexity theory, other topics of interest to the students and instructor. Prerequisite: CMPT 307.

CMPT 408 - Theory of Computing Networks/Communications (3)

Network design parameters and goals, dynamic networks and permutations, routing in direct networks, structured communication in direct networks, other topics of interest to the students and instructor. Prerequisite: CMPT 307 and 371.

CMPT 409 - Special Topics in Theoretical Computing Science (3)

Current topics in theoretical computing science depending on faculty and student interest. Prerequisite: CMPT 307.

MACM 300 - Introduction to Formal Languages and Automata with Applications (3)

Languages, grammars, automata and their applications to natural and formal language processing. Prerequisite: MACM 201. Quantitative.

Minimum Unit and Residency Requirement

Students must complete at least 54 units at Zhejiang University including at least 34 computing science core course units. Students must also complete at least 54 units at ¶¡ÏãÔ°AV. Students admitted from Zhejiang University must complete at least 39 upper division units of these minimum 54 units at ¶¡ÏãÔ°AV. Courses completed at Zhejiang University are not transfer units. They are marked as DDP units on the ¶¡ÏãÔ°AV transcript.

Co-operative Education and Work Experience

All students may choose to participate in co-operative education or work placements.

Writing, Quantitative, and Breadth Requirements

Students admitted to ¶¡ÏãÔ°AV beginning in the fall 2006 term must meet writing, quantitative and breadth requirements as part of any degree program they may undertake. See for university-wide information.

WQB Graduation Requirements

A grade of C- or better is required to earn W, Q or B credit

Requirement

Units

Notes
W - Writing

6

Must include at least one upper division course, taken at ¶¡ÏãÔ°AV within the student’s major subject
Q - Quantitative

6

Q courses may be lower or upper division
B - Breadth

18

Designated Breadth Must be outside the student’s major subject, and may be lower or upper division
6 units Social Sciences: B-Soc
6 units Humanities: B-Hum
6 units Sciences: B-Sci

6

Additional Breadth 6 units outside the student’s major subject (may or may not be B-designated courses, and will likely help fulfil individual degree program requirements)

Students choosing to complete a joint major, joint honours, double major, two extended minors, an extended minor and a minor, or two minors may satisfy the breadth requirements (designated or not designated) with courses completed in either one or both program areas.

Back to Top

Tuition and Program Fee

See for more information.