¶¡ÏãÔ°AV

i Please note:  

To view the current calendar, go to

¶¡ÏãÔ°AV Calendar | Fall 2013

Mathematics Major

Bachelor of Science

This program leads to a bachelor of science (BSc) degree.

Prerequisite Grade Requirement

To enrol in a course offered by the Department of Mathematics, a student must obtain a grade of C- or better in each prerequisite course. Some courses may require higher prerequisite grades. Check the MATH course’s Calendar description for details.

Students will not normally be permitted to enrol in any course for which a D grade or lower was obtained in any prerequisite. No student may complete, for further credit, any course offered by the Department of Mathematics which is a prerequisite for a course the student has already completed with a grade of C- or higher, without permission of the department.

Grade Requirements

In the courses used to satisfy the upper division requirements, a grade point average (GPA) of at least 2.00 is required. In addition, University regulations require a cumulative GPA of at least 2.00 and an upper division GPA of at least 2.00. These averages are computed on all courses completed at the University. See Grade Point Averages Needed for Graduation.

Program Requirements

Students complete 120 units, as specified below.

Lower Division Requirements

Students complete a minimum total of 31 units, including either one of

CMPT 126 - Introduction to Computing Science and Programming (3)

A rigorous introduction to computing science and computer programming, suitable for students who already have substantial programming background. This course provides a condensed version of the two-course sequence of CMPT 120/125, with the primary focus on computing science and object oriented programming. Topics include: fundamental algorithms and problem solving; abstract data types and elementary data structures; basic object-oriented programming and software design; elements of empirical and theoretical algorithmics; computation and computability; specification and program correctness; and history of computing science. Prerequisite: BC Math 12 (or equivalent, or any of MATH 100, 150, 151, 154, or 157). Students with credit for CMPT 120, 125, 128, 130, 135 or higher may not take CMPT 126 for further credit. Quantitative/Breadth-Science.

CMPT 128 - Introduction to Computing Science and Programming for Engineers (3)

An introduction to computing science and computer programming, suitable for students wishing to major in Engineering Science or a related program. This course introduces basic computing science concepts, and fundamentals of object oriented programming. Topics include: fundamental algorithms and problem solving; abstract data types and elementary data structures; basic object-oriented programming and software design; elements of empirical and theoretical algorithmics; computation and computability; specification and program correctness; and history of computing science. The course will use a programming language commonly used in Engineering Science. Prerequisite: BC Math 12 (or equivalent, or any of MATH 100, 150, 151, 154, or 157). Students with credit for CMPT 125, 126, 130 or CMPT 200 or higher may not take for further credit. Quantitative/Breadth-Science.

or both of

CMPT 120 - Introduction to Computing Science and Programming I (3)

An elementary introduction to computing science and computer programming, suitable for students with little or no programming background. Students will learn fundamental concepts and terminology of computing science, acquire elementary skills for programming in a high-level language and be exposed to diverse fields within, and applications of computing science. Topics will include: pseudocode, data types and control structures, fundamental algorithms, computability and complexity, computer architecture, and history of computing science. Treatment is informal and programming is presented as a problem-solving tool. Students should consult with the self-evaluation on the School of Computing Science website to decide whether they should follow the CMPT 120/125 course sequence or enrol in CMPT 126. Prerequisite: BC Math 12 or equivalent is recommended. Students with credit for CMPT 102, 125, 126, 128 or CMPT 200 or higher may not take this course for further credit. Quantitative/Breadth-Science.

CMPT 125 - Introduction to Computing Science and Programming II (3)

A rigorous introduction to computing science and computer programming, suitable for students who already have some backgrounds in computing science and programming. Intended for students who will major in computing science or a related program. Topics include: fundamental algorithms; elements of empirical and theoretical algorithmics; abstract data types and elementary data structures; basic object-oriented programming and software design; computation and computability; specification and program correctness; and history of computing science. Prerequisite: BC Math 12 (or equivalent, or any of MATH 100, 150, 151, 154, or 157) and CMPT 120. Students with credit for CMPT 126, 128, 135 or CMPT 200 or higher may not take for further credit. Quantitative.

and all of

MACM 101 - Discrete Mathematics I (3)

Introduction to counting, induction, automata theory, formal reasoning, modular arithmetic. Prerequisite: BC Math 12 (or equivalent, or any of MATH 100, 150, 151, 154, 157. Quantitative/Breadth-Science.

MACM 201 - Discrete Mathematics II (3)

A continuation of MACM 101. Topics covered include graph theory, trees, inclusion-exclusion, generating functions, recurrence relations, and optimization and matching. Prerequisite: MACM 101. Quantitative.

MATH 242 - Introduction to Analysis I (3)

Mathematical induction. Limits of real sequences and real functions. Continuity and its consequences. The mean value theorem. The fundamental theorem of calculus. Series. Prerequisite: MATH 152; or MATH 155 or 158 with a grade of B. Quantitative.

MATH 251 - Calculus III (3)

Rectangular, cylindrical and spherical coordinates. Vectors, lines, planes, cylinders, quadric surfaces. Vector functions, curves, motion in space. Differential and integral calculus of several variables. Vector fields, line integrals, fundamental theorem for line integrals, Green's theorem. Prerequisite: MATH 152; or MATH 155 or MATH 158 with a grade of at least B. Recommended: It is recommended that MATH 240 or 232 be taken before or concurrently with MATH 251. Quantitative.

STAT 270 - Introduction to Probability and Statistics (3)

Basic laws of probability, sample distributions. Introduction to statistical inference and applications. Corequisite: MATH 152 or 155 or 158. Students wishing an intuitive appreciation of a broad range of statistical strategies may wish to take STAT 100 first. Quantitative. Prerequisite: COREQ-MATH 152 or 155 or 158. Students wishing an intuitive appreciation of a broad range of statistical strategies may wish to take STAT 100 first. Equivalent Courses: STAT102 STAT103 STAT201 STAT203 STAT301. Quantitative.

and either

MACM 202 - Mathematical Modeling and Computation (4)

A variety of continuous and discrete models such as difference equations, differential equations, networks, cellular automata, and fractals are introduced. Students will develop mathematical models for physical phenomena, and use the computer to simulate and analyze the models. A mathematical software package, such as Maple or Matlab, will be extensively used in a laboratory setting. Prerequisite: MATH 152 (or MATH 155 or 158), and CMPT 125 (or CMPT 101 or 104 or 126) and MATH 240 or 232 (co-requisite). Quantitative.

or two of

MACM 203 - Computing with Linear Algebra (2)

Development of computer models that analyze and illustrate applications of linear algebra. Topics include: large-scale matrix calculations, experiments with cellular automata, population models, data fitting and optimization, image analysis. Prerequisite: One of CMPT 125, 126 or 128 and one of MATH 150, 151, 154, or 157. Students in excess of 75 units may not take MACM 203 for further credit. MATH 232 or 240 (can be taken as corequisite). Quantitative.

MACM 204 - Computing with Calculus (2)

Development of computer models that analyze and illustrate applications of multi-variable calculus. Topics include: 3D visualization of curves and surfaces, disease spread models, multi-dimensional optimization and probability models. Prerequisite: One of CMPT 125, 126 or 128. Students in excess of 75 units may not take MACM 204 for further credit. MATH 251 (can be taken as a corequisite). Quantitative.

MATH 294 - Computational Studies in Mathematics (2)

Independent study of computational models in a specialized area of mathematics. Course plans, made in consultation with a supervising instructor, should cover a broad computational perspective, and involve at least three distinct modelling or computational approaches. Prerequisite: One of MATH 232 or 240; and MATH 251. Written permission of the department undergraduate studies committee.

or with prior approval, one of^

MACM 401 - Introduction to Computer Algebra (3)

A first course in computer algebra also called symbolic computation. It covers data-structures and algorithms for mathematical objects, including polynomials, general mathematical formulae, long integer arithmetic, polynomial greatest common divisors, the Risch integration algorithm. Other topics include symbolic differentiation, simplification of formulae, and polynomial factorization. Students will learn Maple for use on assignments. Prerequisite: CMPT 307 or MATH 332 or MATH 340. Quantitative.

MACM 409 - Numerical Linear Algebra: Algorithms, Implementation and Applications (3)

Development of numerical methods for solving linear algebra problems at the heart of many scientific computing problems. Mathematical foundations for the use, implementation and analysis of the algorithms used for solving many optimization problems and differential equations. Prerequisite: MATH 251, MACM 316, programming experience. Quantitative.

MATH 439 - Selected Topics in Algebra (3)

Topics in advanced algebra not covered by other courses. Prerequisite: MATH 338 or 340 or 332, according to the particular topic or topics offered.

^cannot be used to satisfy other upper division requirements

and one of

MATH 150 - Calculus I with Review (4)

Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Topics as for Math 151 with a more extensive review of functions, their properties and their graphs. Recommended for students with no previous knowledge of Calculus. In addition to regularly scheduled lectures, students enrolled in this course are encouraged to come for assistance to the Calculus Workshop (Burnaby), or Math Open Lab (Surrey). Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least B+, or MATH 100 with a grade of at least B-, or achieving a satisfactory grade on the ¶¡ÏãÔ°AV Calculus Readiness Test. Students with credit for either MATH 151, 154 or 157 may not take MATH 150 for further credit. Quantitative.

MATH 151 - Calculus I (3) *

Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Logarithmic and exponential functions, trigonometric functions, inverse functions. Limits, continuity, and derivatives. Techniques of differentiation, including logarithmic and implicit differentiation. The Mean Value Theorem. Applications of Differentiation including extrema, curve sketching, related rates, Newton's method. Antiderivatives and applications. Conic sections, polar coordinates, parametric curves. Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least A, or MATH 100 with a grade of at least B, or achieving a satisfactory grade on the ¶¡ÏãÔ°AV Calculus Readiness Test. Students with credit for either MATH 150, 154 or 157 may not take MATH 151 for further credit. Quantitative.

MATH 154 - Calculus I for the Biological Sciences (3) **

Designed for students specializing in the biological and medical sciences. Topics include: limits, growth rate and the derivative; elementary functions, optimization and approximation methods, and their applications; mathematical models of biological processes. Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least B, or MATH 100 with a grade of at least C, or achieving a satisfactory grade on the ¶¡ÏãÔ°AV Calculus Readiness Test. Students with credit for either MATH 150, 151 or 157 may not take MATH 154 for further credit. Quantitative.

MATH 157 - Calculus I for the Social Sciences (3) **

Designed for students specializing in business or the social sciences. Topics include: limits, growth rate and the derivative; logarithmic exponential and trigonometric functions and their application to business, economics, optimization and approximation methods; functions of several variables. Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least B, or MATH 100 with a grade of at least C, or achieving a satisfactory grade on the ¶¡ÏãÔ°AV Calculus Readiness Test. Students with credit for either MATH 150, 151 or 154 may not take MATH 157 for further credit. Quantitative.

and one of

MATH 152 - Calculus II (3) *

Riemann sum, Fundamental Theorem of Calculus, definite, indefinite and improper integrals, approximate integration, integration techniques, applications of integration. First-order separable differential equations. Sequences and series, series tests, power series, convergence and applications of power series. Prerequisite: MATH 150 or 151; or MATH 154 or 157 with a grade of at least B. Students with credit for MATH 155 or 158 may not take this course for further credit. Quantitative.

MATH 155 - Calculus II for the Biological Sciences (3) **

Designed for students specializing in the biological and medical sciences. Topics include: the integral, partial derivatives, differential equations, linear systems, and their applications; mathematical models of biological processes. Prerequisite: MATH 150, 151 or 154; or MATH 157 with a grade of at least B. Students with credit for MATH 152 or 158 may not take this course for further credit. Quantitative.

MATH 158 - Calculus II for the Social Sciences (3) **

Theory of integration and its applications; introduction to multivariable calculus with emphasis on partial derivatives and their applications; introduction to differential equations with emphasis on some special first-order equations and their applications to economics and social sciences; continuous probability models; sequences and series. Prerequisite: MATH 150 or 151 or 154 or 157. Students with credit for MATH 152 or 155 may not take MATH 158 for further credit. Quantitative.

and one of

MATH 232 - Applied Linear Algebra (3) **

Linear equations, matrices, determinants. Introduction to vector spaces and linear transformations and bases. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. An emphasis on applications involving matrix and vector calculations. Prerequisite: MATH 150 or 151; or MACM 101; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 240 make not take this course for further credit. Quantitative.

MATH 240 - Algebra I: Linear Algebra (3) *

Linear equations, matrices, determinants. Real and abstract vector spaces, subspaces and linear transformations; basis and change of basis. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. Applications. Subject is presented with an abstract emphais and includes proofs of the basic theorems. Prerequisite: MATH 150 or 151; or MACM 101; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 232 cannot take this course for further credit. Quantitative.

* strongly recommended

** with a B grade or better

Upper Division Requirements

Students complete a minimum total of 44 units, including the following.

Students complete 15 units, including

MATH 340 - Algebra II: Rings and Fields (3)

The integers and mathematical proof. Relations and modular arithmetic. Rings and fields, polynomial rings, the Euclidean algorithm. The complex numbers and the fundamental theorem of algebra. Construction of finite fields, primitive elements in finite fields, and their application. Prerequisite: MATH 240 (or MATH 232 with a grade of at least B). Students with credit for MATH 332 may not take this course for further credit. Quantitative.

and one of

MATH 308 - Linear Optimization (3)

Linear programming modelling. The simplex method and its variants. Duality theory. Post-optimality analysis. Applications and software. Additional topics may include: game theory, network simplex algorithm, and convex sets. Prerequisite: MATH 150, 151, 154, or 157 and MATH 240 or 232. Quantitative.

MATH 343 - Applied Discrete Mathematics (3)

Structures and algorithms, generating elementary combinatorial objects, counting (integer partitions, set partitions, Catalan families), backtracking algorithms, branch and bound, heuristic search algorithms. Prerequisite: MACM 201 (with a grade of at least B-). Recommended: knowledge of a programming language. Quantitative.

MATH 345 - Introduction to Graph Theory (3)

Fundamental concepts, trees and distances, matchings and factors, connectivity and paths, network flows, integral flows. Prerequisite: MACM 201 (with a grade of at least B-). Quantitative.

and one of

MATH 320 - Introduction to Analysis II (3)

Sequences and series of functions, topology of sets in Euclidean space, introduction to metric spaces, functions of several variables. Prerequisite: MATH 242 and 251. Quantitative.

MATH 322 - Complex Variables (3)

Functions of a complex variable, differentiability, contour integrals, Cauchy's theorem, Taylor and Laurent expansions, method of residues. Prerequisite: MATH 251. Students with credit for MATH 424 may not take this course for further credit. Quantitative.

and one of

MATH 338 - Advanced Linear Algebra (3)

Linear Algebra. Vector space and matrix theory. Prerequisite: MATH 340 or 332 or permission of the instructor. Students with credit for MATH 438 may not take this course for further credit. Quantitative.

MATH 341 - Algebra III: Groups (3)

Finite groups and subgroups. Cyclic groups and permutation groups. Cosets, normal subgroups and factor groups. Homomorphisms and isomorphisms. Fundamental theorem of finite abelian groups. Sylow theorems. Prerequisite: MATH 340 or 342 or 332. Students with credit for MATH 339 may not take this course for further credit.

MATH 342 - Elementary Number Theory (3)

The prime numbers, unique factorization, congruences and quadratic reciprocity. Topics include the RSA public key cryptosystem and the prime number theorem. Prerequisite: MATH 240 or 232, and one additional 200 level MATH or MACM course. Quantitative.

and one of

MATH 310 - Introduction to Ordinary Differential Equations (3)

First-order differential equations, second- and higher-order linear equations, series solutions, introduction to Laplace transform, systems and numerical methods, applications in the physical, biological and social sciences. Prerequisite: MATH 152; or MATH 155/158 with a grade of at least B, MATH 232 or 240. Quantitative.

MACM 316 - Numerical Analysis I (3)

A presentation of the problems commonly arising in numerical analysis and scientific computing and the basic methods for their solutions. Prerequisite: MATH 152 or 155 or 158, and MATH 232 or 240, and computing experience. Quantitative.

The Faculty of Science requires students to complete 44 upper division units. Of these 44, the Department of Mathematics requires students to complete 30 upper division units, 15 of which are prescribed and listed above. The remaining 15 upper division units must be chosen from the following, or any combination of the following.

  • any upper division MATH courses
  • any upper division MACM courses

PHYS 413 - Advanced Mechanics (3)

Central forces, rigid body motion, small oscillations. Lagrangian and Hamiltonian formulations of mechanics. Prerequisite: PHYS 384 or permission of the department. Non-physics majors may enter with MATH 252, 310 and PHYS 211. Quantitative.

STAT 330 - Introduction to Mathematical Statistics (3)

Review of probability and distributions. Multivariate distributions. Distributions of functions of random variables. Limiting distributions. Inference. Sufficient statistics for the exponential family. Maximum likelihood. Bayes estimation, Fisher information, limited distributions of MLEs. Likelihood ratio tests. Prerequisite: STAT 285 and MATH 251. Quantitative.

STAT 340 - Introduction to Statistical Computing and Exploratory Data Analysis (3)

Statistical computing in R and SAS. Data management: reading, editing and storing statistical data; querying databases with SQL. Data exploration and representation: summarizing data with tables, graphs and other statistical tools. Data simulation: model-based and empirical. The SAS component of the course will give students a good start for writing the SAS programming certification exams. Prerequisite: STAT 285 or STAT 302 or STAT 305 or equivalent. Quantitative.

STAT 350 - Linear Models in Applied Statistics (3)

Theory and application of linear regression. Normal distribution theory. Hypothesis tests and confidence intervals. Model selection. Model diagnostics. Introduction to weighted least squares and generalized linear models. Prerequisite: STAT 285 and MATH 251. Quantitative.

STAT 380 - Introduction to Stochastic Processes (3)

Review of discrete and continuous probability models and relationships between them. Exploration of conditioning and conditional expectation. Markov chains. Random walks. Continuous time processes. Poisson process. Markov processes. Gaussian processes. Prerequisite: STAT 330. Quantitative.

STAT 430 - Statistical Design and Analysis of Experiments (3)

An extension of the designs discussed in STAT 350 to include more than one blocking variable, incomplete block designs, fractional factorial designs, and response surface methods. Prerequisite: STAT 350 (or MATH 372). Equivalent Courses: MATH404. Quantitative.

STAT 445 - Applied Multivariate Analysis (3)

Introduction to principal components, cluster analysis, and other commonly used multivariate techniques. Prerequisite: STAT 285 or STAT 302 or STAT 305 or equivalent. Quantitative.

STAT 450 - Statistical Theory (3)

Distribution theory, methods for constructing tests, estimators, and confidence intervals with special attention to likelihood methods. Properties of the procedures including large sample theory. Prerequisite: STAT 330. Quantitative.

STAT 460 - Bayesian Statistics (3)

The Bayesian approach to statistics is an alternative and increasingly popular way of quantifying uncertainty in the presence of data. This course considers comparative statistical inference, prior distributions, Bayesian computation, and applications. Prerequisite: STAT 330 and 350. Quantitative.

STAT 475 - Applied Discrete Data Analysis (3)

Introduction to standard methodology for analyzing categorical data including chi-squared tests for two- and multi-way contingency tables, logistic regression, and loglinear (Poisson) regression. Prerequisite: STAT 285 or STAT 302 or STAT 305 or equivalent. Students with credit for the former STAT 402 or 602 may not take this course for further credit. Quantitative.

STAT 485 - Applied Time Series Analysis (3)

Introduction to linear time series analysts including moving average, autoregressive and ARIMA models, estimation, data analysis, forecasting errors and confidence intervals, conditional and unconditional models, and seasonal models. Prerequisite: STAT 285 or STAT 302 or STAT 305 or equivalent. This course may not be taken for further credit by students who have credit for ECON 484. Quantitative.

Twenty-four units will be in MATH or MACM courses. At least three courses will be 400 division courses, of which at least two must be in 400 division MATH or MACM courses. Directed studies, job practicum, or honours essay courses cannot be used to fulfil the 400 division requirement.

Students are required to complete an additional 14 upper division units chosen from any courses.

Elective Courses

In addition to the courses listed above, students should consult an academic advisor to plan the remaining required elective courses.

Students obtain at least six units in courses offered by the Faculty of Science outside the Department of Mathematics, and the Department of Statistics and Actuarial Science. Courses PHYS 100, BISC 100 and CHEM 110/111 cannot be used to satisfy this requirement. Students will also obtain at least six units in Faculty of Arts and Social Sciences courses. (The two required CMPT courses and the Faculty of Arts and Social Sciences six-unit requirement fulfill the Faculty of Science requirement that students complete 12 units from outside the Faculty of Science.)

Faculty of Science Requirements

In addition to the above requirements, students must also satisfy Faculty of Science major program requirements to complete a total of 120 units including

-additional upper division units to total a minimum of 44 upper division units (excluding EDUC 401 to 406)

-students who were enrolled at ¶¡ÏãÔ°AV between fall 1991 and summer 2006 are required to complete a minimum of 12 units in subjects outside the Faculty of Science (excluding EDUC 401 to 406) including six units minimum to be completed in the Faculty of Arts and Social Sciences

Writing, Quantitative, and Breadth Requirements

Students admitted to ¶¡ÏãÔ°AV beginning in the fall 2006 term must meet writing, quantitative and breadth requirements as part of any degree program they may undertake. See for university-wide information.

WQB Graduation Requirements

A grade of C- or better is required to earn W, Q or B credit

Requirement

Units

Notes
W - Writing

6

Must include at least one upper division course, taken at ¶¡ÏãÔ°AV within the student’s major subject
Q - Quantitative

6

Q courses may be lower or upper division
B - Breadth

18

Designated Breadth Must be outside the student’s major subject, and may be lower or upper division
6 units Social Sciences: B-Soc
6 units Humanities: B-Hum
6 units Sciences: B-Sci

6

Additional Breadth 6 units outside the student’s major subject (may or may not be B-designated courses, and will likely help fulfil individual degree program requirements)

Back to Top

Residency Requirements and Transfer Credit

The University’s residency requirement stipulates that, in most cases, total transfer and course challenge credit may not exceed 60 units, and may not include more than 15 as upper division work.

For calendar technical problems or errors, contact calendar-sfu@sfu.ca | Calendar Changes and Corrections