間眅埶AV

i Please note:  

To view the current calendar, go to

| 間眅埶AV Calendar | Fall 2013

Chemical Physics Major

Bachelor of Science

This bachelor of science (BSc) program is offered jointly by the Departments of Chemistry and Physics. Entry requires permission of both.

Minimum Grade Requirement

Students wishing to enrol in physics courses must obtain a C- grade or better in prerequisite courses.

Program Requirements

Students complete 120 units, as specified below.

Lower Division Requirements

Students are strongly encouraged to complete at least three lower division computing science units, in addition to the following requirements.

Students complete a minimum total of 57 units, including all of

CHEM 121 - General Chemistry and Laboratory I (4)

Atomic and molecular structure; chemical bonding; thermochemistry; elements; periodic table; gases liquids, solids, and solutions. This course includes a laboratory component. Prerequisite: BC high school chemistry 12 or CHEM 111. Recommended: MATH 151 (or 154) and PHYS 120 (or 101) as a corequisite. Students may not count both CHEM 120 and 121 for credit. Quantitative/Breadth-Science.

CHEM 122 - General Chemistry II (2)

Chemical equilibria; electrochemistry; chemical thermodynamics; kinetics. Students who intend to take further laboratory courses in chemistry should take CHEM 122 concurrently with CHEM 126. Prerequisite: CHEM 121 or 120. Recommended: MATH 152 (or 155) and PHYS 121 (or 102) as a corequisite. Quantitative.

CHEM 126 - General Chemistry Laboratory II (2)

Experiments in chemical equilibrium, acids and bases, qualitative analysis, electrochemistry and chemical kinetics. Prerequisite: CHEM 121. Corequisite: CHEM 122. Quantitative.

CHEM 215 - Introduction to Analytical Chemistry (4)

The principles of analytical chemistry and their practical application to solution samples. Titrimetric and electrochemical methods. Prerequisite: CHEM 122 and 126. Quantitative.

CHEM 230 - Inorganic Chemistry (3)

The chemistry of the elements and their inorganic compounds in terms of fundamental concepts of perodicity of properties, valence, ionization potential, electron affinity, electronegativity, stability of oxidation states, bonding, structure and stereochemistry. Co-ordination complexes and organometallic chemistry. Prerequisite: CHEM 122. Corequisite: students who expect to take further courses in inorganic chemistry should take the laboratory course CHEM 236 concurrently with 230. Quantitative.

CHEM 236W - Inorganic Chemistry Laboratory (3)

An introduction to the synthetic and spectroscopic techniques used in the preparation and characterization of both main group and transition metal compounds. Prerequisite: CHEM 122 and 126. Corequisite: CHEM 230. Students with credit for CHEM 236 may not take this course for further credit. Writing/Quantitative.

CHEM 281 - Organic Chemistry I (4)

Structure, bonding, physical and chemical properties of simple organic compounds. Introduction to spectroscopy. Kinetics and mechanisms of organic reactions. This course includes a laboratory component. Prerequisite: CHEM 121. Corequisite: CHEM 122. Quantitative.

MATH 152 - Calculus II (3)

Riemann sum, Fundamental Theorem of Calculus, definite, indefinite and improper integrals, approximate integration, integration techniques, applications of integration. First-order separable differential equations. Sequences and series, series tests, power series, convergence and applications of power series. Prerequisite: MATH 150 or 151; or MATH 154 or 157 with a grade of at least B. Students with credit for MATH 155 or 158 may not take this course for further credit. Quantitative.

MATH 251 - Calculus III (3)

Rectangular, cylindrical and spherical coordinates. Vectors, lines, planes, cylinders, quadric surfaces. Vector functions, curves, motion in space. Differential and integral calculus of several variables. Vector fields, line integrals, fundamental theorem for line integrals, Green's theorem. Prerequisite: MATH 152; or MATH 155 or MATH 158 with a grade of at least B. Recommended: It is recommended that MATH 240 or 232 be taken before or concurrently with MATH 251. Quantitative.

MATH 252 - Vector Calculus (3)

Vector calculus, divergence, gradient and curl; line, surface and volume integrals; conservative fields, theorems of Gauss, Green and Stokes; general curvilinear coordinates and tensor notation. Introduction to orthogonality of functions, orthogonal polynomials and Fourier series. Prerequisite: MATH 240 or 232, and 251. MATH 240 or 232 may be taken concurrently. Students with credit for MATH 254 may not take MATH 252 for further credit. Quantitative.

PHYS 131 - Physics Laboratory I (2) *

Elementary experiments in optics, electricity, and mechanics that are designed to augment the general survey courses. Corequisite: PHYS 121 or 126 should be taken concurrently or may precede; or by permission of the department. Students with credit for PHYS 130 or 141 may not take PHYS 131 for further credit. Quantitative.

PHYS 211 - Intermediate Mechanics (3)

An intermediate mechanics course covering kinematics, dynamics, calculus of variations and Lagrange's equations, non-inertial reference frames, central forces and orbits, and rigid body motion. Prerequisite: PHYS 126 or 121 or 141. Corequisite: MATH 251; MATH 232 or 240. Recommended: MATH 310 and PHYS 255. Quantitative.

PHYS 231 - Physics Laboratory II (3)

Introductory physics laboratory with experiments chosen from mechanics, heat, optics, electricity, magnetism, properties of matter, atomic and nuclear physics, along with lectures on the use of computers for data acquisition and data analysis in the physics laboratory. Prerequisite: PHYS 141 or 131 or 130. Students with credit for PHYS 234 may not take this course for further credit. Quantitative.

PHYS 255 - Vibrations and Waves (3)

The physics of vibrations and waves. Topics include periodic motion, including free and forced oscillations, coupled oscillators, normal modes, and waves in one and higher dimensions. Prerequisite: PHYS 126 or 121 or 141; or PHYS 101 and 102 with a grade of B or better. Corequisite: MATH 251; MATH 232 or 240. Recommended concurrent: PHYS 211 and MATH 310. Quantitative.

and one of

MATH 150 - Calculus I with Review (4)

Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Topics as for Math 151 with a more extensive review of functions, their properties and their graphs. Recommended for students with no previous knowledge of Calculus. In addition to regularly scheduled lectures, students enrolled in this course are encouraged to come for assistance to the Calculus Workshop (Burnaby), or Math Open Lab (Surrey). Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least B+, or MATH 100 with a grade of at least B-, or achieving a satisfactory grade on the 間眅埶AV Calculus Readiness Test. Students with credit for either MATH 151, 154 or 157 may not take MATH 150 for further credit. Quantitative.

MATH 151 - Calculus I (3)

Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Logarithmic and exponential functions, trigonometric functions, inverse functions. Limits, continuity, and derivatives. Techniques of differentiation, including logarithmic and implicit differentiation. The Mean Value Theorem. Applications of Differentiation including extrema, curve sketching, related rates, Newton's method. Antiderivatives and applications. Conic sections, polar coordinates, parametric curves. Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least A, or MATH 100 with a grade of at least B, or achieving a satisfactory grade on the 間眅埶AV Calculus Readiness Test. Students with credit for either MATH 150, 154 or 157 may not take MATH 151 for further credit. Quantitative.

and one of

MATH 232 - Applied Linear Algebra (3)

Linear equations, matrices, determinants. Introduction to vector spaces and linear transformations and bases. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. An emphasis on applications involving matrix and vector calculations. Prerequisite: MATH 150 or 151; or MACM 101; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 240 make not take this course for further credit. Quantitative.

MATH 240 - Algebra I: Linear Algebra (3)

Linear equations, matrices, determinants. Real and abstract vector spaces, subspaces and linear transformations; basis and change of basis. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. Applications. Subject is presented with an abstract emphais and includes proofs of the basic theorems. Prerequisite: MATH 150 or 151; or MACM 101; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 232 cannot take this course for further credit. Quantitative.

and one of

CHEM 260 - Atoms, Molecules, Spectroscopy (4)

Elements of physical chemistry from the molecular point of view. Introduction to quantum chemistry, atomic and molecular structure, and spectroscopy. Prerequisite: CHEM 122, MATH 152, PHYS 121. Recommended: MATH 232. Quantitative.

PHYS 285 - Introduction to Relativity and Quantum Mechanics (3)

Special relativity, including relativistic kinematics and dynamics; tests of relativity; matter waves and early quantum models; wave mechanics and its application to molecular, atomic and subatomic systems. Prerequisite: PHYS 255. Quantitative.

and one of

PHYS 120 - Mechanics and Modern Physics (3)

A general calculus-based introduction to mechanics. Topics include translational and rotational motion, momentum, energy, gravitation, and selected topics in modern physics. Prerequisite: BC Principles of Physics 12 or PHYS 100 or equivalent. This prerequisite may be waived, at the discretion of the department, as determined by the student's performance on a regularly scheduled PHYS 100 final exam. Please consult the physics advisor for further details. Corequisite: MATH 150 or 151 or 154 must precede or be taken concurrently. Students with credit for PHYS 101, 125 or 140 may not take this course for further credit. Quantitative/Breadth-Science.

PHYS 125 - Mechanics and Special Relativity (3) +

Newtonian mechanics and special relativity for students with good preparation in physics and mathematics. Topics include Newtonian particle mechanics, angular momentum, torque, conservation laws, gravitation, and special relativity. Prerequisite: Greater than 85% in both BC Pre-Calculus 12 & BC Physics 12, or a grade of A in PHYS 100, or equivalent. Co-requisite: MATH 150 or 151 or 154 must precede or be taken concurrently. Students with credit for PHYS 101, 120 or PHYS 140 may not take PHYS 125 for further credit. Quantitative.

PHYS 140 - Studio Physics - Mechanics and Modern Physics (4) *

A general calculus-based introduction to mechanics taught in an integrated lecture-laboratory environment. Topics include translational and rotational motion, momentum, energy, gravitation, and selected topics in modern physics. Prerequisite: BC Principles of Physics 12, or equivalent. Corequisite: MATH 150 or 151 or 154 must precede or be taken concurrently. Students with credit for PHYS 125 or 120 or 101 may not take this course for further credit. Quantitative/Breadth-Science.

and one of

PHYS 121 - Optics, Electricity and Magnetism (3)

A general calculus-based introduction to electricity, magnetism and optics. Topics include electricity, magnetism, simple circuits, optics and topics from applied physics. Prerequisite: PHYS 120 or 125 or 140 (or PHYS 101 with a grade of A or B). Corequisite: MATH 152 or 155 must precede or be taken concurrently. Students with credit for PHYS 102, 126 or 141 may not take this course for further credit. Quantitative/Breadth-Science.

PHYS 126 - Electricity, Magnetism and Light (3) +

Electricity, magnetism, and the electromagnetic character of light for students with good preparation in physics and mathematics. Topics include waves, simple electrical circuits, electricity, magnetism, the unifications of electromagnetism in relativity, light as an electromagnetic wave, and photons. Prerequisite: PHYS 125 or a grade of A or better in PHYS 120 or 140. Corequisite: MATH 152 or 155 must precede or be taken concurrently. Students with credit in PHYS 102, 121 or 141 may not take this course for further credit. Quantitative.

PHYS 141 - Studio Physics - Optics, Electricity and Magnetism (4) *

A general calculus-based introduction to electricity, magnetism and optics taught in an integrated lecture-laboratory environment. Topics include electricity, magnetism, simple circuits, optics and topics from applied physics. Prerequisite: PHYS 140. Corequisite: MATH 152 or 155 must precede or be taken concurrently. Students with credit for PHYS 126 or 121 or 102 may not take this course for further credit. Quantitative/Breadth-Science.

* students with credit for PHYS 140 and 141 are not required to complete PHYS 131

+ recommended

Upper Division Requirements

Students complete a minimum total of 40 units, including all of

CHEM 340 - Materials Chemistry (3)

Bonding in solid state materials. Introduction to symmetry and its applications in materials science. Structure and physical properties of solid state materials. Prerequisite: Completion of 60 units in a science or applied science program, including first year chemistry, physics and calculus. Quantitative.

CHEM 366W - Physical Chemistry Laboratory II (3) ++

Advanced experimental methods in thermodynamics, chemical kinetics, electrochemistry, and atomic and molecular structure. Prerequisite: CHEM 266. Corequisite: CHEM 360. Writing/Quantitative.

CHEM 462 - Molecular Spectroscopy (3)

Atomic spectra. Electronic, vibrational and rotational spectra of diatomic and polyatomic molecules. The Raman effect. Nuclear and electron spin resonance. Symmetry classification of molecules and their energy levels. Prerequisite: CHEM 260 or PHYS 385. Quantitative.

MATH 310 - Introduction to Ordinary Differential Equations (3)

First-order differential equations, second- and higher-order linear equations, series solutions, introduction to Laplace transform, systems and numerical methods, applications in the physical, biological and social sciences. Prerequisite: MATH 152; or MATH 155/158 with a grade of at least B, MATH 232 or 240. Quantitative.

PHYS 321 - Intermediate Electricity and Magnetism (3)

Development and application of Maxwell's equations in vector differential form. Notation and theorems of vector calculus; electric charge, fields, potentials, capacitance and field energy; conductors; methods for solving electrostatic problems; electric fields in matter; electrical current and the magnetic field; Ampere's law and the vector potential; magnetic fields in matter; electromotive force, electrical resistance, Faraday's law and inductance; Maxwell's correction to Ampere's law and electromagnetic waves. Prerequisite: PHYS 130 or 131 or 141; MATH 252 or 254; MATH 310. Students with credit for PHYS 221 may not take this course for further credit. Quantitative.

PHYS 421 - Electromagnetic Waves (3)

A continuation of PHYS 321: properties of electromagnetic waves and their interaction with matter. Transmission lines and waveguides; antennas, radiation and scattering; propagation of electromagnetic waves in free space and in matter; reflection and refraction at boundaries; polarization, interference and diffraction. Prerequisite: PHYS 321; PHYS 255 or ENSC 380. Students with credit for PHYS 324 or 425 may not take PHYS 421 for further credit. Quantitative.

and one of

PHYS 326 - Electronics and Instrumentation (4)

Circuits and circuit theory, passive and active devices, amplifiers, feedback, modern measurement techniques and instrumentation. Prerequisite: PHYS 231 and 255. Quantitative.

PHYS 332W - Optics Laboratory (4) **

Experiments in optics and modern physics, including diffraction, interference, spectroscopy, lasers and holography. Engineering Science students will do a selected set of experiments. Prerequisite: PHYS 233 and 285, or equivalent. Students with credit for PHYS 332 may not take this course for further credit. Writing/Quantitative.

and one of

CHEM 360 - Thermodynamics and Chemical Kinetics (3)

Elements of physical chemistry from the macroscopic point of view. Thermodynamics, and its applications to chemical equilibrium. Chemical kinetics and reaction rate theories. Prerequisite: CHEM 122, MATH 152 (or 155), PHYS 121 (or 102). Recommended: MATH 251. Credit will not be granted for both CHEM 360 and MBB 323. Quantitative.

PHYS 344 - Thermal Physics (3)

Heat, temperature, heat transfer, kinetic theory, laws of thermodynamics, entropy, heat engines, applications of thermodynamics to special systems, phase transitions. Prerequisite: PHYS 126 or 121, MATH 251. Quantitative.

and one of

CHEM 460 - Advanced Physical Chemistry (3)

Statistical thermodynamics, kinetic theory of gases, transport properties, intermolecular forces, electrical properties of molecules, properties of ionic solutions, Debye-Huckel theory, electrochemistry. Prerequisite: MATH 251; CHEM 260 and 360, or PHYS 385 and 344. Quantitative.

PHYS 445 - Statistical Physics (3)

Postulates of statistical mechanics, partition functions, applications to gases, paramagnetism and equilibrium. Quantum statistics and applications. Prerequisite: PHYS 344 or CHEM 360. Recommended: PHYS 385. Quantitative.

and one of

CHEM 464 - Quantum Chemistry (3)

Fundamentals of quantum mechanics and its principal results and techniques as applied to atoms and molecules: atomic structure, molecular bonding, rotations and vibrations of molecules, symmetry of atomic and molecular orbitals. Prerequisite: CHEM 260, MATH 232, 251; or PHYS 385. Recommended: MATH 310. Students with credit for CHEM 469 may not take this course for further credit. Quantitative.

PHYS 385 - Quantum Mechanics I (3)

Wave mechanics and the Schroedinger equation, the harmonic oscillator, introduction to Dirac notation, angular momentum and spin, the hydrogen atom, atomic structure, time-independent perturbation theory, atomic spectra, and applications. Prerequisite: MATH 252 or 254; PHYS 285 or ENSC 380 or CHEM 260. Corequisite: PHYS 211; MATH 310. Quantitative.

and upper division chemistry, nuclear science or physics units chosen to total the number of upper division units to 40, and maintain a minimum of 15 upper division units in both chemistry and physics

** the requirement of PHYS 233 as a prerequisite for PHYS 332W is waived

++ may substitute PHYS 285 for CHEM 260 as a prerequisite for CHEM 366W

Faculty of Science Major Requirements

In addition to the above requirements, students must also satisfy Faculty of Science major program requirements to complete a total of 120 units including

  • additional upper division units to total a minimum of 44 upper division units (excluding EDUC 401 to 406)
  • students who were enrolled at 間眅埶AV between fall 1991 and summer 2006 are required to complete a minimum of 12 units in subjects outside the Faculty of Science (excluding EDUC 401 to 406) including six units minimum to be completed in the Faculty of Arts and Social Sciences

Writing, Quantitative, and Breadth Requirements

Students admitted to 間眅埶AV beginning in the fall 2006 term must meet writing, quantitative and breadth requirements as part of any degree program they may undertake. See for university-wide information.

WQB Graduation Requirements

A grade of C- or better is required to earn W, Q or B credit

Requirement

Units

Notes
W - Writing

6

Must include at least one upper division course, taken at 間眅埶AV within the student’s major subject
Q - Quantitative

6

Q courses may be lower or upper division
B - Breadth

18

Designated Breadth Must be outside the student’s major subject, and may be lower or upper division
6 units Social Sciences: B-Soc
6 units Humanities: B-Hum
6 units Sciences: B-Sci

6

Additional Breadth 6 units outside the student’s major subject (may or may not be B-designated courses, and will likely help fulfil individual degree program requirements)

Back to Top

Residency Requirements and Transfer Credit

The University’s residency requirement stipulates that, in most cases, total transfer and course challenge credit may not exceed 60 units, and may not include more than 15 as upper division work.

Elective Courses

In addition to the courses listed above, students should consult an academic advisor to plan the remaining required elective courses.

For calendar technical problems or errors, contact calendar-sfu@sfu.ca | Calendar Changes and Corrections