間眅埶AV

i Please note:  

To view the current calendar, go to

| 間眅埶AV Calendar | Fall 2013

Biological Physics Major

Bachelor of Science

This bachelor of science (BSc) program is for students who are interested in using physical approaches to tackle biological problems.

Students should speak with an advisor as soon as possible to schedule their programs.

Minimum Grade Requirement

Students wishing to enroll in physics courses must obtain a C- grade or better in prerequisite courses.

Program Requirements

Students complete 120 units, as specified below.

Lower Division Requirements

Students complete a minimum total of 64 units, including all of

BISC 101 - General Biology (4)

An introduction to the biochemical and physiological mechanisms of living organisms. Topics covered include cell structure and function, DNA replication and the flow of genetic information, enzyme function, metabolism and physiology of microorganisms, plants, and animals. Prerequisite: High school biology 12 (or equivalent) with a C grade or better, or BISC 100 with C- or better, or HSCI 100 with C+ or better. Breadth-Science.

BISC 102 - General Biology (4)

Survey of the diversity of life, and its evolutionary history on earth. The student is introduced to the study of genetics, development, and evolution, giving an overview of how these processes interact to produce form and function. Also included are principles of behavior and ecological relationships of organisms to each other and their environment. Prerequisite: High school biology 12 (or equivalent) with a C grade or better, or BISC 100 with C- or better, or HSCI 100 with C+ or better. Breadth-Science.

BISC 202 - Genetics (3)

Principles and concepts of the transmission of genetic information treated comparatively in man, animal, plant and microbe. Prerequisite: BISC 101 and 102 with a grade of C- or better.

CHEM 121 - General Chemistry and Laboratory I (4)

Atomic and molecular structure; chemical bonding; thermochemistry; elements; periodic table; gases liquids, solids, and solutions. This course includes a laboratory component. Prerequisite: BC high school chemistry 12 or CHEM 111. Recommended: MATH 151 (or 154) and PHYS 120 (or 101) as a corequisite. Students may not count both CHEM 120 and 121 for credit. Quantitative/Breadth-Science.

CHEM 122 - General Chemistry II (2)

Chemical equilibria; electrochemistry; chemical thermodynamics; kinetics. Students who intend to take further laboratory courses in chemistry should take CHEM 122 concurrently with CHEM 126. Prerequisite: CHEM 121 or 120. Recommended: MATH 152 (or 155) and PHYS 121 (or 102) as a corequisite. Quantitative.

CHEM 281 - Organic Chemistry I (4)

Structure, bonding, physical and chemical properties of simple organic compounds. Introduction to spectroscopy. Kinetics and mechanisms of organic reactions. This course includes a laboratory component. Prerequisite: CHEM 121. Corequisite: CHEM 122. Quantitative.

CHEM 282 - Organic Chemistry II (2)

Polyfunctional organic compounds and complex organic reactions. Introduction to natural products. Students with credit for CHEM 283 may not complete this course for further credit. Prerequisite: CHEM 281. Quantitative.

MATH 152 - Calculus II (3)

Riemann sum, Fundamental Theorem of Calculus, definite, indefinite and improper integrals, approximate integration, integration techniques, applications of integration. First-order separable differential equations. Sequences and series, series tests, power series, convergence and applications of power series. Prerequisite: MATH 150 or 151; or MATH 154 or 157 with a grade of at least B. Students with credit for MATH 155 or 158 may not take this course for further credit. Quantitative.

MATH 251 - Calculus III (3)

Rectangular, cylindrical and spherical coordinates. Vectors, lines, planes, cylinders, quadric surfaces. Vector functions, curves, motion in space. Differential and integral calculus of several variables. Vector fields, line integrals, fundamental theorem for line integrals, Green's theorem. Prerequisite: MATH 152; or MATH 155 or MATH 158 with a grade of at least B. Recommended: It is recommended that MATH 240 or 232 be taken before or concurrently with MATH 251. Quantitative.

MATH 252 - Vector Calculus (3)

Vector calculus, divergence, gradient and curl; line, surface and volume integrals; conservative fields, theorems of Gauss, Green and Stokes; general curvilinear coordinates and tensor notation. Introduction to orthogonality of functions, orthogonal polynomials and Fourier series. Prerequisite: MATH 240 or 232, and 251. MATH 240 or 232 may be taken concurrently. Students with credit for MATH 254 may not take MATH 252 for further credit. Quantitative.

MBB 222 - Molecular Biology and Biochemistry (3)

The structure, function and synthesis of proteins, RNA and DNA and their interrelated biological functions within the cell. An introduction to molecular biology techniques and methods of protein purification and analysis. Prerequisite: or Corequisite CHEM 281.

MBB 231 - Cellular Biology and Biochemistry (3)

Prerequisite: MBB 222, BISC 101, CHEM 281 with grades of C- or better. Corequisite: Chem 282 or Chem 283. Students who have taken MBB 221 and MBB 231 may not repeat this course for further credit.

PHYS 211 - Intermediate Mechanics (3)

An intermediate mechanics course covering kinematics, dynamics, calculus of variations and Lagrange's equations, non-inertial reference frames, central forces and orbits, and rigid body motion. Prerequisite: PHYS 126 or 121 or 141. Corequisite: MATH 251; MATH 232 or 240. Recommended: MATH 310 and PHYS 255. Quantitative.

PHYS 231 - Physics Laboratory II (3)

Introductory physics laboratory with experiments chosen from mechanics, heat, optics, electricity, magnetism, properties of matter, atomic and nuclear physics, along with lectures on the use of computers for data acquisition and data analysis in the physics laboratory. Prerequisite: PHYS 141 or 131 or 130. Students with credit for PHYS 234 may not take this course for further credit. Quantitative.

PHYS 255 - Vibrations and Waves (3)

The physics of vibrations and waves. Topics include periodic motion, including free and forced oscillations, coupled oscillators, normal modes, and waves in one and higher dimensions. Prerequisite: PHYS 126 or 121 or 141; or PHYS 101 and 102 with a grade of B or better. Corequisite: MATH 251; MATH 232 or 240. Recommended concurrent: PHYS 211 and MATH 310. Quantitative.

and one of

MATH 150 - Calculus I with Review (4)

Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Topics as for Math 151 with a more extensive review of functions, their properties and their graphs. Recommended for students with no previous knowledge of Calculus. In addition to regularly scheduled lectures, students enrolled in this course are encouraged to come for assistance to the Calculus Workshop (Burnaby), or Math Open Lab (Surrey). Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least B+, or MATH 100 with a grade of at least B-, or achieving a satisfactory grade on the 間眅埶AV Calculus Readiness Test. Students with credit for either MATH 151, 154 or 157 may not take MATH 150 for further credit. Quantitative.

MATH 151 - Calculus I (3)

Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Logarithmic and exponential functions, trigonometric functions, inverse functions. Limits, continuity, and derivatives. Techniques of differentiation, including logarithmic and implicit differentiation. The Mean Value Theorem. Applications of Differentiation including extrema, curve sketching, related rates, Newton's method. Antiderivatives and applications. Conic sections, polar coordinates, parametric curves. Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least A, or MATH 100 with a grade of at least B, or achieving a satisfactory grade on the 間眅埶AV Calculus Readiness Test. Students with credit for either MATH 150, 154 or 157 may not take MATH 151 for further credit. Quantitative.

and one of

MATH 232 - Applied Linear Algebra (3)

Linear equations, matrices, determinants. Introduction to vector spaces and linear transformations and bases. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. An emphasis on applications involving matrix and vector calculations. Prerequisite: MATH 150 or 151; or MACM 101; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 240 make not take this course for further credit. Quantitative.

MATH 240 - Algebra I: Linear Algebra (3)

Linear equations, matrices, determinants. Real and abstract vector spaces, subspaces and linear transformations; basis and change of basis. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. Applications. Subject is presented with an abstract emphais and includes proofs of the basic theorems. Prerequisite: MATH 150 or 151; or MACM 101; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 232 cannot take this course for further credit. Quantitative.

and one of

CHEM 260 - Atoms, Molecules, Spectroscopy (4)

Elements of physical chemistry from the molecular point of view. Introduction to quantum chemistry, atomic and molecular structure, and spectroscopy. Prerequisite: CHEM 122, MATH 152, PHYS 121. Recommended: MATH 232. Quantitative.

PHYS 285 - Introduction to Relativity and Quantum Mechanics (3)

Special relativity, including relativistic kinematics and dynamics; tests of relativity; matter waves and early quantum models; wave mechanics and its application to molecular, atomic and subatomic systems. Prerequisite: PHYS 255. Quantitative.

and one of

PHYS 101 - Physics for the Life Sciences I (3)

Force and motion, conservation of energy and momentum, fluids, properties of soft matter and thermal physics with applications taken from the life sciences. Prerequisite: BC Principles of Physics 12 or PHYS 100 or equivalent. This prerequisite may be waived, at the discretion of the department, as determined by the student's performance on a regularly scheduled PHYS 100 final exam. Please consult the physics advisor for further details. Corequisite: MATH 150 or 151 or 154 or 157; BISC 100 or 101 or 102. Students with credit for PHYS 120, 125 or 140 may not take this course for further credit. Quantitative/Breadth-Science.

PHYS 120 - Mechanics and Modern Physics (3)

A general calculus-based introduction to mechanics. Topics include translational and rotational motion, momentum, energy, gravitation, and selected topics in modern physics. Prerequisite: BC Principles of Physics 12 or PHYS 100 or equivalent. This prerequisite may be waived, at the discretion of the department, as determined by the student's performance on a regularly scheduled PHYS 100 final exam. Please consult the physics advisor for further details. Corequisite: MATH 150 or 151 or 154 must precede or be taken concurrently. Students with credit for PHYS 101, 125 or 140 may not take this course for further credit. Quantitative/Breadth-Science.

PHYS 125 - Mechanics and Special Relativity (3) +

Newtonian mechanics and special relativity for students with good preparation in physics and mathematics. Topics include Newtonian particle mechanics, angular momentum, torque, conservation laws, gravitation, and special relativity. Prerequisite: Greater than 85% in both BC Pre-Calculus 12 & BC Physics 12, or a grade of A in PHYS 100, or equivalent. Co-requisite: MATH 150 or 151 or 154 must precede or be taken concurrently. Students with credit for PHYS 101, 120 or PHYS 140 may not take PHYS 125 for further credit. Quantitative.

PHYS 140 - Studio Physics - Mechanics and Modern Physics (4) *

A general calculus-based introduction to mechanics taught in an integrated lecture-laboratory environment. Topics include translational and rotational motion, momentum, energy, gravitation, and selected topics in modern physics. Prerequisite: BC Principles of Physics 12, or equivalent. Corequisite: MATH 150 or 151 or 154 must precede or be taken concurrently. Students with credit for PHYS 125 or 120 or 101 may not take this course for further credit. Quantitative/Breadth-Science.

and one of

PHYS 102 - Physics for the Life Sciences II (3)

Waves and optics; electricity and magnetism; modern physics emphasizing radioactivity, with applications taken from the life sciences. Prerequisite: PHYS 101 or 120 or 125 or 140. Recommended corequisite: MATH 152 or 155 or 158. Students are encouraged to take PHYS 130 at the same time as PHYS 102. Students with credit for PHYS 121, 126, or 141 may not take this course for further credit. Quantitative/Breadth-Science.

PHYS 121 - Optics, Electricity and Magnetism (3)

A general calculus-based introduction to electricity, magnetism and optics. Topics include electricity, magnetism, simple circuits, optics and topics from applied physics. Prerequisite: PHYS 120 or 125 or 140 (or PHYS 101 with a grade of A or B). Corequisite: MATH 152 or 155 must precede or be taken concurrently. Students with credit for PHYS 102, 126 or 141 may not take this course for further credit. Quantitative/Breadth-Science.

PHYS 126 - Electricity, Magnetism and Light (3) +

Electricity, magnetism, and the electromagnetic character of light for students with good preparation in physics and mathematics. Topics include waves, simple electrical circuits, electricity, magnetism, the unifications of electromagnetism in relativity, light as an electromagnetic wave, and photons. Prerequisite: PHYS 125 or a grade of A or better in PHYS 120 or 140. Corequisite: MATH 152 or 155 must precede or be taken concurrently. Students with credit in PHYS 102, 121 or 141 may not take this course for further credit. Quantitative.

PHYS 141 - Studio Physics - Optics, Electricity and Magnetism (4) *

A general calculus-based introduction to electricity, magnetism and optics taught in an integrated lecture-laboratory environment. Topics include electricity, magnetism, simple circuits, optics and topics from applied physics. Prerequisite: PHYS 140. Corequisite: MATH 152 or 155 must precede or be taken concurrently. Students with credit for PHYS 126 or 121 or 102 may not take this course for further credit. Quantitative/Breadth-Science.

and one of

PHYS 130 - Physics for the Life Sciences Laboratory (2)

Elementary experiments in optics, electricity, mechanics and heat that are designed to augment the general survey course. Corequisite: PHYS 102 should be taken concurrently or may precede; or by permission of the department. Students with credit for PHYS 131 or 141 may not take PHYS 130 for further credit. Quantitative.

PHYS 131 - Physics Laboratory I (2) *

Elementary experiments in optics, electricity, and mechanics that are designed to augment the general survey courses. Corequisite: PHYS 121 or 126 should be taken concurrently or may precede; or by permission of the department. Students with credit for PHYS 130 or 141 may not take PHYS 131 for further credit. Quantitative.

* students with credit for PHYS 140 and 141 are not required to complete PHYS 131

+ recommended

Upper Division Requirements

Students complete a minimum total of 40 units, including all of

MATH 310 - Introduction to Ordinary Differential Equations (3)

First-order differential equations, second- and higher-order linear equations, series solutions, introduction to Laplace transform, systems and numerical methods, applications in the physical, biological and social sciences. Prerequisite: MATH 152; or MATH 155/158 with a grade of at least B, MATH 232 or 240. Quantitative.

MBB 309W - Biochemistry Laboratory (4)

Contemporary techniques in biochemistry including protein purification, immunochemical methods, and lipid characterization. Prerequisite: MBB 222 and MBB 221 or MBB 231. Recommended: CHEM 215 and CHEM 286 precede MBB 309W. Writing.

MBB 322 - Molecular Physiology (3)

Biochemical and molecular aspects of cellular function, interactions and communication including cell cycle, apoptosis, cancer, immune system, neuronal transmission and the signal transduction pathways that integrate them. Prerequisite: MBB 222, and MBB 221 or MBB 231.

MBB 331 - Molecular Biology (3)

The study of DNA and RNA in relation to gene structure and expression: DNA replication and the regulation of gene expression in bacteria and higher organisms. Introduction to recombinant DNA and cloning theory; natural vector structures and recombinant vector construction. Prerequisite: MBB 222 and MBB 221 or MBB 231, BISC 202.

PHYS 321 - Intermediate Electricity and Magnetism (3)

Development and application of Maxwell's equations in vector differential form. Notation and theorems of vector calculus; electric charge, fields, potentials, capacitance and field energy; conductors; methods for solving electrostatic problems; electric fields in matter; electrical current and the magnetic field; Ampere's law and the vector potential; magnetic fields in matter; electromotive force, electrical resistance, Faraday's law and inductance; Maxwell's correction to Ampere's law and electromagnetic waves. Prerequisite: PHYS 130 or 131 or 141; MATH 252 or 254; MATH 310. Students with credit for PHYS 221 may not take this course for further credit. Quantitative.

PHYS 347 - Introduction to Biological Physics (3)

A physics perspective on cellular structure and composition; random walks and diffusion; properties of fluids, cell motion; entropy and the properties of soft materials; structure and function of proteins; signal propagation in nerves. Prerequisite: Completion of 45 units including CHEM 122, MATH 152 (or 155), PHYS 121 (or 102 or 126 or 141). Recommended: BISC 101. Quantitative.

PHYS 385 - Quantum Mechanics I (3)

Wave mechanics and the Schroedinger equation, the harmonic oscillator, introduction to Dirac notation, angular momentum and spin, the hydrogen atom, atomic structure, time-independent perturbation theory, atomic spectra, and applications. Prerequisite: MATH 252 or 254; PHYS 285 or ENSC 380 or CHEM 260. Corequisite: PHYS 211; MATH 310. Quantitative.

PHYS 433 - Biological Physics Laboratory (3)

Experiments in biological and soft condensed matter physics including investigation of Brownian motion, molecular order and biophysical forces using techniques such as optical trapping, NMR, spectroscopy and x-ray diffraction. Attention will also be given to more general skills, including experimental design, operating and troubleshooting experimental equipment, data analysis, and the presentation of experimental results. Prerequisite: PHYS 231 or MBB 309; PHYS 344W or PHYS 347 or MBB 323 or CHEM 360, or permission of the department. Quantitative.

and one of

CHEM 360 - Thermodynamics and Chemical Kinetics (3)

Elements of physical chemistry from the macroscopic point of view. Thermodynamics, and its applications to chemical equilibrium. Chemical kinetics and reaction rate theories. Prerequisite: CHEM 122, MATH 152 (or 155), PHYS 121 (or 102). Recommended: MATH 251. Credit will not be granted for both CHEM 360 and MBB 323. Quantitative.

MBB 323 - Introduction to Physical Biochemistry (3)

Introduction to physical biochemistry including rigorous treatment of thermodynamics and molecular transport and interactions with specific emphasis on biochemical and molecular biological processes. CHEM 360 may be substituted as an alternative to this requirement for MBB majors. Prerequisite: MATH 152 (or 155), PHYS 121 (or 102, or 126, or 141), CHEM 122 (or 102), MBB 222.

PHYS 344 - Thermal Physics (3)

Heat, temperature, heat transfer, kinetic theory, laws of thermodynamics, entropy, heat engines, applications of thermodynamics to special systems, phase transitions. Prerequisite: PHYS 126 or 121, MATH 251. Quantitative.

and four other upper division MBB or PHYS courses. MATH 462 may be included amongst these four. The following courses are suggested.

MBB 308 - Molecular Biology Laboratory (3)

Modern molecular biological and recombinant DNA methods such as DNA isolation, plasmid preparation, restriction enzyme digestion, Southern blots, cloning and polymerase chain reaction. Prerequisite: MBB 222, and MBB 221 or MBB 231, and MBB 331 as a co- or pre-requisite (the latter is recommended). Students with credit for BISC 357 may not take this course for further credit.

MBB 321 - Intermediary Metabolism (3)

The enzymes and intermediates of major catabolic and anabolic pathways. Their regulation and integration in health and disease states. Prerequisite: MBB 222, and MBB 221 or MBB 231.

MBB 421 - Nucleic Acids (3)

Recent literature is examined for insights into the structure and properties of DNA and RNA, drawing on a variety of biochemical, chemical and molecular biological perspectives. Prerequisite: MBB 331 with a grade of C or better.

MBB 422 - Biomembranes (3)

A review of recent research on the structure, dynamics, function and biosynthesis of membranes, membrane lipids and proteins. Prerequisite: MBB 322.

MBB 423 - Protein Structure and Function (3)

Recent research in transition state theory; specificity in enzyme catalyzed reactions, the use of recombinant DNA techniques to describe and modify enzyme catalysis, the function of enzymes in organic solvents, and the development of new catalytic activities through monoclonal antibody techniques. Prerequisite: two of MBB 321, 322, 323, 331.

MBB 441 - Bioinformatics (3)

Lectures and hands-on instruction at the computer in the use of, and theory behind, bioinformatic software and algorithms for the analysis of macromolecular data. Prerequisite: MBB 331 and an introductory computer science course (e.g. CMPT 110 or 120), or equivalent.

MBB 442 - Proteomics (3)

Proteomics concerns the analysis of the entire complement of proteins expressed by an organism. This course will consider protein sequence alignment, sequence database scanning, classification of protein structures, prediction of protein structure and function, and evolution of protein function. Prerequisite: MBB 321 and MBB 322; one introductory computer course (e.g. CMPT 110 or 120), or equivalent.

PHYS 395 - Computational Physics (3)

Computer based approaches to the solution of complex physical problems. A partial list of topics includes: Monte-Carlo and molecular dynamics techniques applied to thermal properties of materials; dynamical behavior of conservative and dissipative systems, including chaotic motion; methods for ground state determination and optimization, including Newton-Raphson, simulated annealing, neural nets, and genetic algorithms; the analysis of numerical data; and the use of relevant numerical libraries. Prerequisite: MATH 310, PHYS 211, CMPT 101 or 102. Recommended: PHYS 344 or equivalent. Quantitative.

PHYS 492 - Special Topics in Physics (3)

Studies in areas not included within the undergraduate course offerings of the Department of Physics. Prerequisite: Permission of the department.

PHYS 413 - Advanced Mechanics (3)

Central forces, rigid body motion, small oscillations. Lagrangian and Hamiltonian formulations of mechanics. Prerequisite: PHYS 384 or permission of the department. Non-physics majors may enter with MATH 252, 310 and PHYS 211. Quantitative.

PHYS 445 - Statistical Physics (3)

Postulates of statistical mechanics, partition functions, applications to gases, paramagnetism and equilibrium. Quantum statistics and applications. Prerequisite: PHYS 344 or CHEM 360. Recommended: PHYS 385. Quantitative.

PHYS 455 - Modern Optics (3)

Optical physics, including geometrical and physical optics, waves in anisotropic media, coherence, image formation and Fourier optics, guided wave optics and selected advanced topics such as lasers, nonlinear optics, photonics and quantum optics. Prerequisite: PHYS 321 or 221. Corequisite: PHYS 385. Quantitative.

PHYS 484 - Nonlinear Physics (3)

Nonlinear mechanics, nonlinear lattice dynamics, competition phenomena, applications in optics and chemistry, forced oscillations, chaos. Prerequisite: PHYS 384 or permission of the department. Quantitative.

MATH 462 - Fluid Dynamics (3)

Incompressible fluid flow phenomena: kinematics and equations of motion, viscous flow and boundary layer theory, potential flow, water waves. Aerodynamics. Prerequisite: one of MATH 314, MATH 418, PHYS 384. An alternative to the above prerequisite is both of MATH 251 and MATH 310, both with grades of at least B+. Quantitative.

Faculty of Science Major Requirements

In addition to the above requirements, students must also satisfy Faculty of Science major program requirements to complete a total of 120 units including

  • additional upper division units to total a minimum of 44 upper division units (excluding EDUC 401 to 406)
  • students who were enrolled at 間眅埶AV between fall 1991 and summer 2006 are required to complete a minimum of 12 units in subjects outside the Faculty of Science (excluding EDUC 401 to 406) including six units minimum to be completed in the Faculty of Arts and Social Sciences

Writing, Quantitative, and Breadth Requirements

Students admitted to 間眅埶AV beginning in the fall 2006 term must meet writing, quantitative and breadth requirements as part of any degree program they may undertake. See for university-wide information.

WQB Graduation Requirements

A grade of C- or better is required to earn W, Q or B credit

Requirement

Units

Notes
W - Writing

6

Must include at least one upper division course, taken at 間眅埶AV within the student’s major subject
Q - Quantitative

6

Q courses may be lower or upper division
B - Breadth

18

Designated Breadth Must be outside the student’s major subject, and may be lower or upper division
6 units Social Sciences: B-Soc
6 units Humanities: B-Hum
6 units Sciences: B-Sci

6

Additional Breadth 6 units outside the student’s major subject (may or may not be B-designated courses, and will likely help fulfil individual degree program requirements)

Back to Top

Residency Requirements and Transfer Credit

The University’s residency requirement stipulates that, in most cases, total transfer and course challenge credit may not exceed 60 units, and may not include more than 15 as upper division work.

Elective Courses

In addition to the courses listed above, students should consult an academic advisor to plan the remaining required elective courses.

For calendar technical problems or errors, contact calendar-sfu@sfu.ca | Calendar Changes and Corrections