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Abstract

We propose a basket trial design that tests the e�ectiveness of a new treatment for several types

of cancers where the endpoint is the survival time. During the trial conduct, Bayesian subgroup

analysis is conducted to classify the cancer types into di�erent clusters according to both the sur-

vival time and the longitudinal biomarker measurements of the patient. Finally, we make Bayesian

inferences to decide whether to stop recruiting patients for each cluster early and make conclusions

about whether the treatment is e�ective for each cluster according to the estimated median survival

time. The simulation study shows that our proposed method performs better than the independent

approach and the Bayesian Hierarchical Modeling (BHM) method in most of the scenarios.

Keywords: Bayesian subgroup analysis; Longitudinal biomarkers; Phase I/II trials; Clinical trials

for cancer
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is a need to incorporate biomarker measurements when classifying the cancer types into subgroups

with di�erent e�cacy. There are some clinical trial designs which incorporate biomarkers as classi-

�ers which can help to classify cancer types into di�erent subgroups. Takeda et al. (2022 [TLR22])

proposed a Bayesian subgroup design where the cancer types are classi�ed into subgroups according

to both the cancer type itself and a second classi�er (biomarker). Liu et al. (2023 [LTR23]) also

proposed a two-stage design where only patients whose biomarkers measured in the �rst stage are

positive are enrolled in the second stage. These studies highlight the importance of biomarkers as

a potential classi�er for cancer types because higher values in some biomarkers can be associated

with better clinical outcomes. Yin et al. (2021 [Yin+21]) proposed a method that combines �nd-

ing the biomarker cuto� and testing the e�ectiveness of the treatment using Bayesian hierarchical

modelling. However, these three designs only allow measuring the biomarker one time instead of

allowing longitudinal biomarker measurements, and their endpoints are binary instead of continu-

ous.

Longitudinal biomarkers are biomarkers that are collected multiple times over time during the

clinical study, which can be used to track the progression and predict the outcome of the disease.

Some clinical trials utilize longitudinal biomarker measurements to help predict the outcome of the

disease. van Delft et al. (2022 [van+22]) conducted research in which serum tumor marker mea-

surements, which are longitudinal biomarkers, are used to predict the immunotherapy non-response

in patients with non-small cell lung cancer. However, this study did not consider classifying more

than one cancer type into subgroups. Some clinical studies demonstrate longitudinal biomarkers are

associated with a certain clinical outcome. Wu et al. (2017[Wu+17]) found that there is a longitu-

dinal association between fasting blood glucose, which is a type of biomarker, and arterial sti�ness

risk in non-diabetic individuals. Paulo et al. (2020[Pau+20]) found that a �longitudinal increase

of HbA1c was independently associated with higher rates of cardiovascular events in patients with

type 2 diabetes and multivessel CAD�, where HbA1c is a biomarker.

In some clinical trials, researchers are more interested in the progression-free survival time (PFS)

instead of the binary indicator of whether the treatment is e�ective. Consequently, there is a need

to develop a clinical trial method that evaluates the e�ectiveness of a treatment for cancers for

which the endpoint is progression-free survival time (PFS) instead of a binary endpoint.

We propose the basket trial design to test the e�ectiveness of a speci�c new treatment for several

types of cancers for which the endpoint is the survival time. Unlike traditional studies which treat

each type of cancer separately, we use Bayesian subgroup analysis to �rst classify the cancer types

into di�erent clusters according to both the survival time and the biomarker measurements of the

patients, and then estimate the parameters to �nd out whether the treatment is e�ective for each

cluster of cancer types. We conclude that the treatment is e�ective for a cluster of cancer types if

the estimated median survival time for this cluster is greater than the threshold that we desire.

In summary, our proposed clinical trial design has many advantages. First, we incorporate the

longitudinal biomarker measurements along with the survival outcomes to help classify the cancer
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Chapter 2

Methods

2.1 Model

In this study, we consider I types of cancer. For each type of cancer, we recruitni patients. We

measure the biomarker for each patientL-times, where the measurement times are denoted byt1,

· · · , tL. The biomarker measurement of thej-th patient in the i-th cancer type measured at timetl

is denoted by Zijl. We assume that we will measure the biomarker at the same time points for all

patients. After we complete the biomarker measurements, we measure the survival time for each

patient, denoted by tij . Let ωij be the censoring indicator for the j-th patient in the i-th cancer

type, where ωij = 1 if the patient is not censored, andωij = 0 if the patient is censored. We assume

that the I types of cancer can be grouped intoK clusters according to the biomarker measurements

and the survival time. In this article, we consider the case whereK = 2, which means that there

is one e�ective cluster and one ine�ective cluster. However, the method can be generalized for the

cases whereK > 2. The objective of the study is to determine whether the treatment is e�ective for

each cluster of patients, which is re�ected by the median survival time for each cluster of patients.

The hypothesis test is

H0 : ρi < q0 versusHa : ρi > q1,

where ρi is the median survival time for cluster i, q0 is the median survival time cuto� under

which the treatment is deemed ine�ective, and q1 is the median survival time cuto� over which the

treatment is deemed e�ective.

Let πik denote the probability that cancer type i belongs to clusterk. Let Ci be an indicator of

which cluster the cancer type belongs to. For example,C1 = 2 means that the �rst cancer type

belongs to the second cluster. We assume thatCi has the multinomial distribution:

Ci ∼ Multinomial(πi1, . . . , πiK).

Recall that Zijl is the biomarker measurement of thej-th patient in the i-th cancer type measured

at time tl. We assume the biomarker measures are structured as follows,
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Zijl|(Ci = k) = µk(tl) + vi + wij + ϵijl,

which re�ects the grouping structure of the model. Speci�cally, every cluster has a mean trajectory

of the biomarker, which is denoted by µk(tl). Every group within the cluster can have a mean

trajectory that varies from the mean trajectory of the cluster, and the di�erence is denoted by



σ2
ϵ ∼ IG(10� 3, 10� 3).

θ2 ∼ Uniform(− 1, 1).

λ ∼ Gamma(0.1, 0.1).

r ∼ Gamma(0.1, 0.1).

In the distributions above, IG(α, β) denotes the inverse Gamma distribution with shape parameter

α and scale parameterβ.

2.3 Trial Design

This trial has M planned interim analyses. Let Dm be the observed data at them-th interim

analysis. Recall that ρi is the median survival time for cluster i.

If P { ρi > (q0 + q1)/2|Dm} < Qf , then stop recruiting patients for cancer types that belong to the

i-th cluster and conclude that the treatment is ine�ective for these types of cancers. Otherwise,

continue to recruit patients for these cancer types. Here,Qf is a probability cuto�; in this study,

we setQf to be a small value, e.g., 0.05.

At the end of the study, declrddTd 9t -340(theTd 936(b)-27(elongr]TJ/F49 74(median)-33152 7.9701 Tf 8.624 -1.7)-28(e9-1.77he)-339(end)-339(of)-340(the).3.07i Tf 5.641 -1.637 Td [3129t)aard



Chapter 3

Illustration

We illustrate how to implement our proposed design using a hypothetical clinical trial. Suppose we

would like to evaluate whether a new drug is e�ective for each of the 12 types of cancers which

share the same molecular aberration. Suppose the maximum number of patients in each cancer

type is 50, and we have one planned interim analysis. In the �rst stage, we only recruit 30 patients

for each cancer type. We �rst measure the biomarkers for each patient 20 times. After that, we

record the observed survival time and censoring status of each patient.

After we collect the data, we �t the model and sample from the posterior distributions of the

parameters. Recall that the interim stopping rule is that if P { ρi > (q0 + q1)/2|Dm} < Qf = 0.05,

then we stop recruiting patients for cancer types which belong to thei-th cluster, and conclude

that the treatment is ine�ective for these types of cancers. The posterior distribution of ρ1 and ρ2

are shown below.

The posterior probabilities are P (C1 = 1) = P (C2 = 1) = P (C3 = 1) = P (C4 = 1) = P (C5 = 1) =
P (C6 = 1) = 1, and P (C7 = 1) = P (C8 = 1) = P (C9 = 1) = P (C10 = 1) = P (C11 = 1) = P (C12 =
1) = 0, which means that cancer type 1, 2, 3, 4, 5, 6 belong to the �rst cluster, and cancer type 7,

8, 9, 10, 11, 12 belong to the second cluster. SinceP { ρ1 > (q0 + q1)/2|Dm} = 0 < Qf , we declare

that the treatment is ine�ective for all the cancer types that are classi�ed into the �rst cluster.

SinceP { ρ2 > (q0 + q1)/2|Dm} = 0.984 > Qf , we continue to recruit 20 more patients for each of

the cancer types that are classi�ed into the second cluster, and record the observed survival time

and censoring status of each patient in these cancer types. In the second stage, we only use the

data of the cancer types that are classi�ed into the second cluster in the previous stage. After that,

we �t the model again and estimate the posterior distribution of the parameters again. Recall that

at the end of the study, we declare that the treatment is e�ective if P { ρi > (q0 + q1)/2|Dm} > Q

for the i-th cluster of patients. The posterior distribution of ρ1 is shown below.

The posterior probabilities show that P (C7 = 1) = P (C8 = 1) = P (C9 = 1) = P (C10 = 1) =
P (C11 = 1) = P (C12 = 1) = 1, which means that cancer type 7, 8, 9, 10, 11, 12 are classi�ed into

7



Figure 3.1: The posterior distribution of the median survival time for cluster 1 at the interim
analysis.

the �rst cluster in this stage. Since P { ρ1 > (q0 + q1)/2|Dm} = 0.999, we declare that the treatment

is e�ective for all these six cancer types.
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Figure 3.2: The posterior distribution of the median survival time for cluster 2 at the interim
analysis.

Figure 3.3: The posterior distribution of the median survival time for cluster 1 at the end of the
trial.
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Chapter 4

Simulation Study

We conduct a simulation study to evaluate the performance of the proposed design. We assume

that the cancer types can be grouped into two clusters. The �rst cluster is the group where the

treatment is ine�ective, and the second cluster is the group where the treatment is e�ective. Let

q



Figure 4.1: Mean biomarker measurement. The solid and dashed line represents the mean biomarker
measurement for the e�ective group and the ine�ective group, respectively.

is stopped for this cancer type after the interim analysis because the treatment is considered to be

ine�ective. If the trial is stopped early for a cancer type, then no new patients will be recruited

for this cancer type. �Reject� means that the null hypothesis is rejected for this cancer type, and

we conclude that the treatment is e�ective for this cancer type. �No-Reject� means that the trial

is not early stopped and the null hypothesis is not rejected after interim 2. �Sample Size� means

the average number of patients that are recruited in each cancer type, which are averaged over the

cluster. In scenario A1, there are 12 e�ective cancer types and no ine�ective cancer types. The early

stopping rate for the e�ective group using our proposed model (0.0%) is lower than that using the

independent approach (0.7%) or the BHM method (1.6%), which means that fewer patients who

are actually in the e�ective group are wrongly stopped being recruited using our proposed model.

The rejection rate for the e�ective group after interim 2 using our proposed model (99.6%) is higher

than that using the independent approach (70.5%) or the BHM (73.6%) method, which means that





Figure 4.2: Early stopping rate in the main simulation study. The red, green, and blue bars represent
the BHM method, the independent approach, and the proposed method, respectively. Scenarios A1
to A5 vary regarding the number of e�ective/ine�ective treatments.

the BHM method and the independent approach. The early stopping rate for the e�ective group

using our proposed model (1.7%) is only slightly higher than that using the independent approach

(0.7%) and is lower than that using the BHM method (1.9%). The rejection rate for the e�ective

group after interim 2 using our proposed model (92.5%) is higher than that using the independent

approach (63.3%) or the BHM (69.7%) method, which indicates that our proposed method yields

much higher power than the other two methods. Again, the reason why our proposed model per-



Figure 4.3: Rejection rate, which is the proportion of trials where the null hypothesis is rejected,
in the main simulation study. The red, green, and blue bars represent the BHM method, the
independent approach, and the proposed method, respectively. Scenarios A1 to A5 vary regarding
the number of e�ective/ine�ective treatments.

rate for the e�ective group, higher rejection rate for the e�ective group, and lower rejection rate

for the ine�ective group.
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Chapter 5

Sensitivity Analysis





Figure 5.1: Early stopping rate when the prior distribution of one hyperparameter is changed.
The red, green, and blue bars represent the BHM method, the independent approach, and the
proposed method, respectively. Scenarios B1 to B5 vary regarding the number of e�ective/ine�ective
treatments.

C1, C2, and C3, the number of ine�ective cancer types is 5, 9, and 18, respectively, and the number

of e�ective cancer types is 13, 9, and 0, respectively. In these three scenarios, our proposed model

performs better than the other two methods in general in terms of the early stopping rate and

the rejection rate. For example, in scenario C2, the early stopping rate for the ine�ective group

using our proposed model (89.4%) is higher than that using the independent approach (20.1%) or

the BHM method (43.4%). The rejection rate for the ine�ective group after interim 2 using our

proposed model (0.4%) is lower than that using the independent approach (12.2%) or the BHM

method (1.9%). The rejection rate for the e�ective group after interim 2 using our proposed model

(93.0%) is higher than that using the independent approach (64.0%) or the BHM (69.0%) method.

The only aspect in this scenario where our proposed model performs worse is that the early stop-

ping rate for the e�ective group using our proposed model (1.8%) is higher than that using the

independent approach (0.5%) and is only slightly lower than that using the BHM (2.2%) method.

This simulation study shows that our proposed method performs greatly even if we increase the

number of cancer types.
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Figure 5.2: Rejection rate, which is the proportion of trials where the null hypothesis is rejected when
the prior distribution of one hyperparameter is changed. The red, green, and blue bars represent
the BHM method, the independent approach, and the proposed method, respectively. Scenarios B1
to B5 vary regarding the number of e�ective/ine�ective treatments.

In the third sensitivity analysis, we increase the number of cancer types from 12 to 18 and change

the prior distribution of � 2 from Uniform(-1,1) to Uniform(-2,0), so that we can evaluate the per-

formance of the model when there are more cancer types and the prior distribution of one hyper-

parameter is changed.

Table 5.3 shows the results of the simulation study of the third sensitivity analysis. In scenario D1,

D2, and D3, the number of ine�ective cancer types is 5, 9, and 18, respectively, and the number of

e�ective cancer types is 13, 9, and 0, respectively. In most cases, our proposed model outperforms

the other two methods in terms of the early stopping rate and rejection rate. For example, in sce-

nario D1, The early stopping rate for the ine�ective group using our proposed model (75.4%) is

higher than that using the independent approach (19.3%) or the BHM method (39.5%). The early

stopping rate for the e�ective group using our proposed model (0.0%) is lower than that using

the independent approach (0.5%) or the BHM method (2.0%). The rejection rate for the e�ective

18



Early Stop % Reject % No-Reject % Sample Size
C1 Proposed Model Ine�ective 82.2 4.8 13.0 33.6

E�ective 0.0 98.4 1.6 50.0
Independent Approach Ine�ective 19.3 10.5 70.2 46.1

E�ective 0.5 68.8 30.7 49.9
BHM Ine�ective 39.5 1.8 58.7 42.1

E�ective 2.0 70.8 27.3 49.6
C2 Proposed Model Ine�ective 89.4 0.4 10.2 32.1

E�ective 1.8 93.0 5.2 49.6
Independent Approach Ine�ective 20.1 12.2 67.7 46.0

E�ective 0.5 64.0 35.5 49.9
BHM Ine�ective 43.4 1.9 54.7 41.3

E�ective 2.2 69.0 28.8 49.6
C3 Proposed Model Ine�ective 97.3 0.0 2.7 30.5

E�ective - - - -
Independent Approach Ine�ective 20.3 7.5 72.2 45.9

E�ective - - - -
BHM Ine�ective 51.7 1.6 46.7 39.7

E�ective - - - -

Table 5.2: Simulation results of the sensitivity analysis when the number of cancer types increases.
This table shows the early stopping rate, rejection rate, and sample size under three simulation
scenarios.

group after interim 2 using our proposed model (96.8%) is higher than that using the independent

approach (68.8%) or the BHM (70.8%) method. The only drawback to our proposed model in this

scenario is that the rejection rate for the ine�ective group after interim 2 using our proposed model

(10.2%) is only slightly lower than that using the independent approach (10.5%) and is higher than

that using the BHM (1.8%) method.

In summary, our proposed model still performs better in most of the scenarios, which means that

the model is not very sensitive to the number of cancer types or the prior distribution of the

hyperparameter.
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Figure 5.3: Early stopping rate when the number of cancer types increases. The red, green, and blue
bars represent the BHM method, the independent approach, and the proposed method, respectively.
Scenarios C1 to C3 vary regarding the number of e�ective/ine�ective treatments.

20



Figure 5.4: Rejection rate, which is the proportion of trials where the null hypothesis is rejected
when the number of cancer types increases. The red, green, and blue bars represent the BHM
method, the independent approach, and the proposed method, respectively. Scenarios C1 to C3
vary regarding the number of e�ective/ine�ective treatments.
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Early Stop % Reject % No-Reject % Sample Size
D1 Proposed Model Ine�ective 75.4 10.2 14.4 34.9

E�ective 0.0 96.8 3.2 50.0
Independent Approach Ine�ective 19.3 10.5 70.2 46.1

E�ective 0.5 68.8 30.7 49.9
BHM Ine�ective 39.5 1.8 58.7 42.1

E�ective 2.0 70.8 27.3 49.6
D2 Proposed Model Ine�ective 73.4 1.4 25.2 35.3

E�ective 6.4 77.5 16.1 48.7
Independent Approach Ine�ective 20.1 12.2 67.7 46.0

E�ective 0.5 64.0 35.5 49.9
BHM Ine�ective 43.4 1.9 54.7 41.3

E�ective 2.2 69.0 28.8 49.6
D3 Proposed Model Ine�ective 97.9 0.0 2.1 30.4

E�ective - - - -
Independent Approach Ine�ective 20.3 7.5 72.2 45.9

E�ective - - - -
BHM Ine�ective 51.7 1.6 46.7 39.7

E�ective - - - -

Table 5.3: Simulation results of the sensitivity analysis when the number of cancer types increases,
and the prior distribution of one hyperparameter is changed. This table shows the early stopping
rate, rejection rate, and sample size under three simulation scenarios.
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Figure 5.5: Early stopping rate when the number of cancer types increases, and the prior distribution
of one hyperparameter is changed. The red, green, and blue bars represent the BHM method, the
independent approach, and the proposed method, respectively. Scenarios D1 to D3 vary regarding
the number of e�ective/ine�ective treatments.
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Figure 5.6: Rejection rate, which is the proportion of trials where the null hypothesis is rejected,
when the number of cancer types increases, and the prior distribution of one hyperparameter is
changed. The red, green, and blue bars represent the BHM method, the independent approach,
and the proposed method, respectively. Scenarios D1 to D3 vary regarding the number of e�ec-
tive/ine�ective treatments.





Chapter 7

Gibbs Sampler for the Proposed
Model

Step 1: We updateCi.

We denoteZ ij = (Zij1, ..., ZijL), and Z i = (Z i 1 , ..., Z iJ ). For i = 1, ..., I, Ci ∼ Multinomial(τi1, ..., τiK),
where

τik =
πik NQ i (u i ( k ) ,σ2

� I Q i )
Q

j
[f ft (tij )g! ij f St (tij )g1� ! ij ]

P K
i =1

πik NQ i (u i ( k ) ,σ2
� I i )

Q
j
[f ft (tij )g! ij f St (tij )g1� ! ij ]

,

where u i ( k ) = X i� � ( k ) + X ib bi , Qi = Lni,

� ( k ) = (γ1(k), γ2(k), · · · , γS(k))> ,

bi = (vi, wi1, ..., wiJ)> .

Here, NQi (w, σ2IQi ) is a Qi-variate normal density function of Zi, X i� is a Qi-by-S design matrix

of the i-th arm associated with α(k), and X ibbi



Normal distributions, and the prior distributions are σ2
v ∼ IG(10� 3, 10� 3), σ2

w ∼ IG(10� 3, 10� 3),
and σ2

ϵ ∼ IG(10� 3, 10� 3), we are calculating the posterior distribution of the variance of the Normal

distribution where the mean is known and the prior distribution of the variance follows Inverse

Gamma distribution. As a result, we get the posterior distributions.

σ2
v |. ∼ IG(10� 3 + 0.5I, 10� 3 + 0.5

P I
i=1 v2

i ),
σ2

w|. ∼ IG(10� 3 + 0.5N, 10� 3 + 0.5
P I

i=1
P nj

j=1 w2
ij),

σ2
ϵ |. ∼ IG(10� 3 + 0.5LN, 10� 3 + 0.5

P I
i=1

P nj
j=1

P L
l=1 ϵ2

ijl).



and X b( k ) is a Qk-by-(I + N) design matrix associated with the random-e�ect vector for cluster k.

The values of γq(k) for each observation (each measurement for each patient) are stored inX � ( k )

for each clusterk, where each row corresponds to one observation in the dataset for clusterk, and

each column corresponds to one coe�cient associated with the B-Spline basis function. The values

of vi and wij for each observation (each measurement for each patient) are stored inX b( k ) for each

cluster k, where each row corresponds to one observation in the dataset for clusterk, and each

column corresponds to one parameter inb.

Since Zijl|(Ci = k) = µk(tl) + vi + wij + ϵijl, we can use the matrix notations introduced in the

previous section to get that Z − X b( k ) b ∼ N(X � ( k ) � k , diag(σ2
ϵ , · · · , σ2

ϵ )). When we update � k in

this step, we are calculating the posterior distribution of the mean of a multivariate Normal random

variable where the variance is known. Let� � k denote the variance matrix of the prior distribution

of � k . Since the prior distribution of � k is N(0, � � k ), we can derive the posterior distribution of

� k using exactly the same method in step 4.

V� ( k ) = (� � 1
� ( k ) + X >

� ( k ) X � ( k ) σ
� 2
ϵ )� 1,

� � ( k ) = σ� 2
ϵ V� ( k ) X >

� ( k ) (Z ( k ) − X b( k ) b).

In summary, the full conditional distribution of � ( k ) is as follows,

f(� ( k ) |.) ∼ N(� � ( k ) , V� ( k ) ), where

V� ( k ) = (� � 1
� ( k ) + X >

� ( k ) X � ( k ) σ
� 2
ϵ )� 1,

� � ( k ) = σ� 2
ϵ V� ( k ) X >

� ( k ) (Z ( k ) − X b( k ) b),
� � ( k ) = 104I S .

Step 6: We update θ2 using Metropolis sampling. Since the prior distribution of θ2 is θ2 ∼
Uniform(− 1, 2



f(r|.) ∝ fgamma(r, 0.1, 10)
Q

ij [{ ft(tij)}ωij { St(tij)}1� ωij ],

where fgamma(x, α, β) is the probability density function of a Gamma random variable where the

shape isα and the rate is β.
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Chapter 8

Model Speci�cation and Gibbs
Sampler for the BHM

The structure of the Bayesian Hierarchical Model is as follows. The survival function for thei-th

patient in the j-th cancer type is related to the cancer type of the patient in the following way,

where θi, λi, and ri are the parameters corresponding to each cancer type.

St(tij) = exp{− λit
ri
ijexp(θi)}.

We assume the parameters have the distributions, whereµθ, σ2
θ , αλ, βλ, αr, and βr are the hyper-

parameters.

θi ∼ N(µθ, σ2
θ),

λi ∼ Gamma(αλ, βλ),
ri ∼ Gamma(αr, βr).

We assume the hyperparameters have the prior distributions.

µθ ∼ N(0, 10),
σ2

θ ∼ Unif(0, 10),
αλ ∼ Unif(0, 1),
βλ ∼ Unif(0, 1),
αr ∼ Unif(0, 1),
βr ∼ Unif(0, 1).

The Gibbs sampler is as follows.

Step 1: We updateθi, λi, and ri using Metropolis sampling

f(θi|.) ∝ fN (θi, µθ, σ2
θ)

Q
j [{ ft(tij)}ωij { S Unif(0t



where fN (x, µ, σ) is the probability density function of a Normal( µ, σ) random variable where the

mean isµ and the standard deviation is σ, and fgamma(x, α, β) is the probability density function

of a Gamma random variable where the shape isα and the rate is β. Here, ft(tij) is the probability

density function of PFS of the i-th patient in the j-th cancer type, and St(tij) is the survival

function of PFS of the i-th patient in the j-th cancer type.

Step 2: We updateµθ, σ2
θ , αλ, βλ, αr, and βr using Metropolis sampling

f(µθ |.) ∝ fN (µθ, 0, 10){
Q
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