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Abstract

The current literature on mortality has mainly focused on model speci�cation, giving less

regard to parameter estimation. Indeed, over the last three decades, multiple mortality

models have been introduced, most being extensions of the well-known Lee-Carter model

or the Cairns-Black-Dowd (CBD) model. However, the estimation of these models has been

somewhat overlooked; most papers focus on frequentist methods, such as the (two-stage)

maximum likelihood estimation method that estimates the mortality parameters �rst and

then the parameters of the mortality improvement dynamics second. In this report, we

present a new Bayesian-based estimation procedure for CBD-type models that relies on

the particle Markov chain Monte Carlo (pMCMC) method of Andrieu et al. (2010). This
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Chapter 1

Introduction

Longevity risk is one of the most signi�cant risks that insurance companies, pension plan

sponsors, and government are exposed to. Longevity risk arises when people live longer than

expected, which means pensions or annuities need to be paid for a much longer time than

expected, resulting in higher pension plan and insurance liabilities.

To capture and understand longevity risk, a wide variety of stochastic mortality models

has been developed during the last three decades. Most of these are extensions of the well-

known Lee-Carter (LC) model or of the Cairns-Black-Dowd (CBD) model. Lee and Carter

(1992) introduce the �rst stochastic mortality model, and since then, multiple LC-type

mortality models were proposed; for instance, Renshaw and Haberman (2006) extend the

LC model to incorporate cohort e�ect. Currie et al. (2006) introduce a simpler age-period-

cohort model, which can be seen as a special case of the Renshaw and Haberman (2006)

model.

Cairns et al. (2006) contribute the main mortality modelling alternative to the LC model.

Their framework is also extended; for instance, Cairns et al. (2009) propose new CBD-type

models that include cohort-e�ect factors and other features. Plat (2009) combines the CBD

model with cohort e�ect with some features of the LC model. Inspired by Plat (2009), Dowd

et al. (2020) extend the CBD-type models of Cairns et al. (2009) by including a static age

function � x ; these are called CBD-X models.

All the mortality models above are constructed from a mixture of independent deter-









following relationship:

qx;t = 1 � exp(� � x;t ) = 1 � exp(� mx;t ):

Age e�ects represent mortality variation by age, regardless of birth cohort. Period e�ects

capture mortality changes over time that equally a�ect all ages during a particular calendar

year. Cohort e�ects represent mortality variations resulting from di�erent generations rep-

resented by the year of birth. Throughout this report, we usec = t � x to represent the year

of birth or cohort year. According to Hunt and Blake (2021), most of the existing stochastic

mortality models in the literature can be written as the following age-period-cohort e�ect

model,

� x;t = � x +
NX

i =1

� (i )
x � (i )

t  (i )
c ; (2.1)

where

ˆ � x;t can be the death rate on logarithmic scale (i.e.,� x;t = log( mx;t )) or the mortality

rate in logit scale (i.e., � x;t = log
�

qx;t
1� qx;t

�
= logit( qx;t )) for people agedx in year t;

ˆ � x is a static age function, which is the basic age e�ect and can be treated as the

mortality table without mortality improvement;

ˆ N is the number of period and/or cohort terms within the model;

ˆ � (i )
x is the i th age-e�ect factor, which variations are associated with physiological and

social ageing processes;

ˆ � (i )
t is the i th period-e�ect factor that a�ects mortality trend for people of all ages

that are alive in period t; for example, this can be related to environmental conditions,

medical developments, and living conditions;

ˆ  (i )
c represents thei th cohort e�ect; that is, the impact of the past conditions on current

mortality rate. For instance, generation-speci�c habits, wars, and catastrophes, for

individuals born in the same year.

The two major mortality model families used in actuarial science are nested within this

general model. They are the LC-type models and the CBD-type models.

2.1 Generalized Lee and Carter-Type Models

Lee and Carter (1992) present an original model that �ts and predicts mortality rates for the

United States. It is a two-factor model that has one period-e�ect factor and two age-e�ect



widely used for various countries' demographic and actuarial applications (e.g., Lundström

and Qvist, 2004; Haqqi Anna Zili et al., 2018; Kamaruddin and Noriszura, 2018).

2.1.1 The Original LC Model

Lee and Carter (1992) propose the following two-factor model for death rates:

� x;t = � x + � (1)
x � (1)

t ;

where � x;t = log( mx;t ) and parameters� x describe the basic pattern oflog(mx;t ) averaged

over time for each age. Parameters



where x =
P x = x max

x = x min
x

xmax � xmin +1 is the average of �tted ages. This model can be written as a nested

version of Equation (2.1) by setting N = 2 , � x = 0 for all x, � (1)
x = 1 for all x, � (2)

x =

(x � x), and  (1)
c =  (2)

c = 1 for all c. The �rst period-e�ect factor � (1)
t represents the

overall mortality improvement over time, and the second� (2)
t captures the di�erent mortality

improvement by ages; speci�cally, people aged below the mean agex have larger mortality

improvements than people aged above the mean agex. They use two period-e�ect factors



where� x;t = logit( qx;t ) and � 2
x =

P x = x max
x = x min

(x� x)2

xmax � xmin +1 . This model can be written as a nested case

of Equation (2.1) by setting N = 4 , � x = 0 for all x, � (1)
x = � (4)

x = 1 for all x, � (2)
x = ( x � x),

� (3)
x = (( x � x)2 � � 2

x ), � (4)
t = 1 for all t, and  (1)

c =  (2)
c =  (3)

c = 1 for all c. Parameters

� (1)
t and � (2)

t have the same meaning as their counterparts in the original CBD model, and

� (3)
t captures non-linearity with respect to age in yeart.

Figure 2.1: US mortality rates for the year 2003. The dots are logit( qx;t ) calculated from
the observed data and the solid line is the model-based estimated mortality rate in logit
scale,logit( q̂x;t ).

2.3 The CBD-X Models

Several extensions of the CBD-type model are introduced by Dowd et al. (2020), which

originate from Plat (2009). These models combine elements of LC-type and CBD-type

models. The resulting models can be used for full age ranges while capturing the cohort

e�ect.

2.3.1 The Plat Model

Plat (2009) assumes a static age function� x , three period-e�ect terms, and cohort e�ect.

The Plat model is thus given by:

� x;t = � x + � (1)
t + � (2)

t (x � x) + � (3)
t (x � x)+ +  (4)

c ;

8



where � x;t = log( mx;t ) and (x � x)+ = max(0 ; x � x). This model can be written as a nested

case of the Equation (2.1) by settingN = 4 , � (1)
x = � (4)

x = � (4)
t =  (1)

c =  (2)
c =  (3)

c = 1 for

all x, t, or c, � (2)
x = ( x � x), and � (3)

x = ( x � x)+ .

Plat (2009) suggests removing the third period-e�ect term if the user is only interested

in the older ages. The two-factor reduced Plat model then becomes:

� x;t = � x + � (1)
t + � (2)

t (x � x) +  (3)
c :

This model is virtually the same as the CBD-X(2) model that we will discuss in the following

section.

2.3.2 The CBD-X Models

Inspired by Plat (2009), Dowd et al. (2020) investigate a new type of mortality model which

combines the static age function� x with the CBD-type models. Models of this type are

called CBD-X1 models. The CBD-X models are used to model mortality of groups of adults

over a wider range of ages than usually advisable for the CBD-type models. The CBD-X

models create a hybrid between the LC and the CBD models, just like the Plat model,

as the LC model can be written in the CBD-X form. The CBD-X(1) model is the CBD-

X model with one period e�ect, and the same naming logic applies to the other CBD-X

models in this report. The CBDX model in Hunt and Blake (2020) is the CBD-X(2) model

without cohort e�ect. Also, the CBD-X model in Cairns et al. (2019) can be treated as a

multi-population version of the CBD-X(2) model without cohort e�ect.

The CBD-X models are given by the following:

CBD-X(1) : � x;t = � x + � (1)
t +  (2)

c ; (2.2)

CBD-X(2) : � x;t = � x + � (1)
t + � (2)

t (x � x) +  (3)
c ; (2.3)

CBD-X(3) : � x;t = � x + � (1)
t + � (2)

t (x � x) + � (3)
t ((x � x)2 � � 2

x ) +  (4)
c ; (2.4)

where � x;t = log( mx;t ). The CBD-X(1) model can be written as a nested case of Equation

(2.1) by setting N = 2 , and � (1)
x = � (2)

x = � (2)
t =  (1)

c = 1 for all x, t, or c. The CBD-X(1)

model without cohort e�ect is essentially the special case of the LC model with� (1)
x = 1 . , 483(373([(c)473([(c)473([(-31(4)]TJ/F33 7.9701 Tf 6.746 5.758 [(3((1))]TJ/F36 7.9701 Tf -0.576 -7.018 Td [(x)]TJ/F32 10.9091 Tf 15.665 1.268 Td [(=)-346(1)]TJ/F31 10.9091 Tf 109 66(�)]TJ/F33 7.9701 Tf 6.285 5.75 Td [((1))]TJ/F36 7.9701 Tf -0.576 -7.018 Td [(x)]TJ/F32 10.9091 Tf 14.925 1.268 Td [(=)-278(()]TJ/F35 10.9091 T09 66(�)]TJ/F33 7.9701 Tf 6.285 5.75 Td [((3))]TJ/F36 7.9701 Tf 0 -8.4 -7.018 Td [(x)]TJ/F32 10.9091 Tf 14.9259 Td [((()]TJ/F35 10.9091 Tf 86.59)]TJ/F33 7.9701 Tf 6.254 5.75s)-37 Td ing)]TJ/F35 10.)]TJ/F36 7.9701 Tf -0.606 -7.018 Td [(c)]TJ/F32 10.9091 Tf 15.31 1.268 Td [(=)-310(1)]TJ/F31 10.9091 Tf 21g)]T2(�)]TJ/F33 7.9701 Tf 6.285 5.75251)-2(2)

c =all245(v0 Td [(x)]TJCBD-X10.9091 Tf 6.235 0 Td [3201TJ/F35 10.9091 Tf 6.667 0 Td [(t)]TJ/F31 10.9091 Tf 3.939 0 Td [4 T5453(or)]TJ/F35 10.9091 Tf 20.457 0 Td [(c)]TJ/TJ -10.9091 Tf 4.721 0 Td [ Td0410(2)]TJ.9091 Tf 6.666 0 Td [(�)]TJ/F33 7JCBD-X33 7.9701 Tf 6.746 5.759.6(x)]TJ/F38 1)]TJ/F36 7.9701 Tf -0.575 -7.018 Td [(x)]TJ/F32 10.9091 Tf 14.924 1.268 Td [(=)-278(()]TJ/F35 10.9091 Tg



� (3)
x = ( x � x)2 � � 2

x . Moreover, � x , � (i )
x ,



Chapter 3

Particle Filters for State-Space
Models

3.1 State-Space Model

The estimation of the mortality models mainly adopts two-stage frequentist methods, which

use a maximum likelihood-based approach �rst, and then estimate a model for the period

e�ects for forecasting purposes. However, by using this two-stage method, the dynamics of

the period e�ects are not directly incorporated in the �rst step. Fung et al. (2017) argue that

recasting di�erent classes of mortality models in a state-space formulation allows for state-



The measurement equation can be written as:

y t = g(� t ; " t ) ; for t 2 f 1; : : : ; Tg; (3.2)

where y t 2 Rn is the vector of observed data at timet, � t are the latent variables, and

" t 2 Rn is the vector of error terms used in the measurement equation. The function

g : RN � Rn ! Rn handles the relationship between the current state of the latent variables

and the observations. Ifg and f are both linear functions, then the SSM is linear; otherwise,

it is non-linear. If the error terms " t and Z t are modelled with Gaussian distributions, then

we have a Gaussian SSM; otherwise, we have a non-Gaussian SSM.

The transition and measurement equations usually involve some unknown parameters

� . In the model, both the latent variables � t and these unknown parameters� need to

be estimated. The di�erence between them is that latent variables vary from time to time

while parameters are �xed. They should, therefore, be estimated di�erently.

3.1.1 State-Space Formulation of the CBD-X Models

The mortality models introduced in Chapter 2 are cast into a state-space representation.

The latent variables are the period e�ects. The observed data are the logged estimated

central death rates, m̂x;t .

Recall that the CBD-X(3) model can be written as in Equation (2.4):

log(mx;t ) = � x + � (1)
t + � (2)

t (x � �x) + � (3)
t

�
(x � �x)2 � � 2

x

�
:

Let the logged observed central death rate,log(m̂x;t ), be the true logged central death rate

plus some noise:

log(m̂x;t ) = log( mx;t ) + � x;t :

Let y t = [log( m̂xmin ;t ) : : : log(m̂xmax ;t )]> be the set oflog(m̂x;t ) for all the age x in year

t. The latent variables are the period e�ects � t =
h
� (1)

t � (2)
t � (3)

t

i >
: The error terms

within the measurement equation are" t = [ " xmin ;t ::: " xmax ;t ]> . Thus, by using matrix

notation, we obta Td [(t)r835 10.9701 Tf86.533 -29.729 Td [(y)]TJ/F36 7.9701 Tf 6.44 -1.636 Td [(t)]TJ/F32 10.9091 Tf 6.586 1.636 Td a Td [(t)r835 10.970Tf 16.235 0 Td [(�)]TJ/F36 7.97016 -19.578 -1.636 Td [(x)]TJ/F32 10.9091 Tf 7.69 6.739 Td [(+)]4J/F35 10.9091 Tf 10.909 0 Td 1(�)]TJ/F36 7.9701 T197.578 -1.636 Td [(x)]4J/F35 10.9091 Tf 5.275 1.636 Td [(�)]TJ/F36 7.9701 Tf 7.283 -1.636 Td [(t)]TJ/F32 10.9091 Tf87.69 6.739 Td [(+)]4J/F35 10.9091 Tf 10.909 0 Td [(")]TJ/F36 7.9701 Tf 5.769 -1.636 Td [(t)]TJ/F35 10.9091 Tf 3.556 0.996 Td [(:)]TJ/F31 10.9091 T63.183.576 -29.728 Td [(where)]TJ/F45 10.90911319773.576 -29.728 Td [(�)]TJ/F36 7.97016 -19.578 -1.636 Td [(x)]TJ/F32 10.90916 -16.586 1.636 Td [(=)-27(;t)]TJ/F35 10.9091 4.6.235 0 Td [(�)]TJ/F36 7.9701 Tf 6.978 -1.636 Td [(x)]TJ/F34 5.9776 Tf 4.767 -1.107 Td [(min)]TJ/F35 10.9091 5.8TJ/2f 13.7 0 Td [(:)-167(:)-16704:x ]>;

x= 2 x
min � �x:::7g( x min � �x[(x)]TJ/F33 7.9701 Tf 4.Tf 27.722 Td [(2)]TJ/F38 10.9091 Tf 7.5Tf 27.722 Td [(�)]TJ/F35 10.9091 Tf 10.909 0 Td [(�)]TJ/F33 7.9701 Tf 6.85 -3.959 Td [(2)]TJ/F36 7.9701 Tf -2TJ6.651.636 Td [(x)]TJ/F31 10.9091 148.8 7.7 -392.959 Td [(2)]TJ85 85.959 Td [(2)]TJ85 85.959 Td [(2)9020-1.F36 .959 Td [(2)]TJ85 85.959 Td [(2)]TJ85 85.959 Td [(2)75.379.F36 .959 Td [(2)]TJ85 85.959 Td [(2)]TJ85 85.959 Td [(2)]TJ/F32 10.9091-1319"

minx:::7g("
mi5x:::7g(2�� 2 x



The transition equation is

� t = � + � t � 1 + Z t ; Z t � N (0; � );

where

� t =
h
� (1)

t � (2)
t � (3)

t

i >
; � = [ � 1 � 2 � 3]> ; � =

2

6
6
4

v11 v12 v13

v12 v22 v23

v13 v23 v33

3

7
7
5 :

A key component of the state-space representation is the distribution of the measurement

errors. We assume thatlog(m̂x;t ) � N (log(mx;t ); 1
D̂ x;t

) yields � x;t � N (0; 1
D̂ x;t

), where D̂x;t

is the observed number of deaths at agex in year t. See Appendix A for the justi�cation of

this assumption.

By writing the CBD-X models in the state-space form, the dynamics of the observations

y t and the dynamics of the period e�ect � t are combined into one system. Furthermore, since

logged observed central death rates follow normal distribution, the measurement density for

single population mortality models listed in Chapter 2 can be written as:

p(y1:



and the transition density:

p(� t j y1:t � 1; � )
| {z }

Predictive Distribution

=
Z

p(� t j � t � 1; � )
| {z }
Transition Density

p(� t � 1 j y1:t � 1; � )
| {z }
Filtering Distribution

d� t � 1;

where the transition density p(� t j � t � 1; � ) is implied by the transition equation as � t =

f (� t � 1; Z t ).

Second, in the update step, we apply Bayes' rule to update the �ltering distribution by

combining the predicted � t with the additional time- t observationsy t :

p (� t j y1:t ; � ) =
p(y t ; � t j y1:t � 1; � )

p(y t j y1:t � 1; �



If we sample J independent random variables, � 0:t � p (� 0:t jy1:t ; � ), then standard

Monte Carlo methods approximate p(� 0:t j y1:t ; � ) by generating an empirical distribution

made up ofJ samples of� j
0:t :

p̂ (� 0:t j y1:t ; � ) =
1
J

JX

j =1

� � j
0: t

(� 0:t );

where � x (x) is a Dirac mass function centred atx. However, if p (� 0:t j y1:t ; � ) is a complex

high-dimensional probability distribution, then we cannot sample � 0:t directly from it. The

SMC algorithm addresses this problem by sampling� 0:t from the proposal distribution

q(� 0:t j y1:t ; � ). The proposal distribution can be any distribution from which it is easy to

generate a sample. The approximation of the conditional probability becomes:

p̂ (� 0:t j y1:t ; � ) /
JX

j =1

W j
t � � j

0: t
(� 0:t );

where W j
t is the normalized importance weight associated with particle� j

0:t to correct for

the fact that � 0:t are not sampled from the right distribution. We de�ne the importance

weight wj
t as

wj
t =

p
�
� j

0:t

�
�
� y1:t ; �

�

q
�
� j

0:t

�
�
� y1:t ; �

� ;

and the normalized importance weight is given by:

W j
t =

wj
tP J

k=1 wk
t

: (3.4)

To avoid having to recompute the entire expression for the importance weights at each

iteration, and to increase computational e�ciency, instead of sampling all the particles � j
0:t

from a joint proposal distribution at once, we sample particles from a sequence of conditional

distributions. We rewrite the proposal distribution in recursive form:

q
�
� j

0:t

�
�
� y1:t ; �

�
� q

�
� j

t

�
�
� � j

0:t � 1; y1:t ; �
�

q
�
� j

0:t � 1

�
�
� y1:t � 1



=
p

�
y t

�
�
� � j

0:t ; y1:t � 1; �
�

p
�
� j

t

�
�
� � j

0:t � 1; y1:t � 1; �
�

p
�
� j

0:t � 1

�
�
� y1:t � 1; �

�

p(y t j y1:t � 1; � )
:

In the SSM, latent variables satisfy the Markov property and, given � t , the observationsy t

are independent ofy1:t � 1, leading to

p
�
� j

0:t

�
�
� y1:t ; �

�
=

p
�
y t

�
�
� � j

t ; �
�

p
�
� j

t

�
�
� � j

t � 1; �
�

p
�
� j

0:t � 1

�
�
� y1:t � 1; �

�

p(y t j y1:t � 1; � )
:

Then, the importance weight becomes:

wj
t =

p
�
y t

�
�
� � j

t ; �
�

p
�
� j

t

�
�
� � j

t � 1; �
�

p
�
� j

0:t � 1

�
�
� y1:t � 1; �

�

p(y t j y1:t � 1; � ) q
�
� j

t

�
�
� � j

0:t � 1; y1:t ; �
�

q
�
� j

0:t � 1

�
�
� y1:t � 1; �

�

/
p

�
y t

�
�
� � j

t ; �
�

p
�
� j

t

�
�
� � j

t � 1; �
�

q
�
� j

t

�
�
� � j

0:t � 1; y1:t ; �
� wj

t � 1:

We thus de�ne

~wj
t �

p
�
y t

�
�
� � j

t ; �
�

p
�
� j

t

�
�
� � j

t � 1; �
�

q
�
� j

t

�
�
� � j

0:t � 1; y1:t ; �
� ;

which is known as the incremental importance weight. The denominator of the incremental

importance weight is typically reduced to q(� j
t j � j

t � 1; y t ; � ) for computational convenience,

so

~wj
t =

p
�
y t

�
�
� � j

t ; �
�

p
�
� j

t

�
�
� � j

t � 1; �
�

q
�
� j

t

�
�
� � j

t � 1; y t ; �
� :

As a result, at each iteration, only the incremental importance weight needs to be computed,

and a new sequence of particles is obtained by keeping the trajectories of the particles

sampled up to time t � 1.

The SMC produces its approximation by an iterative process. The algorithm presented

below is based on Andrieu et al. (2010). At �rst, we need to generate initial values for our

particles � 0. Then, for each time t, we start by sampling, J random samples of� t , denoted

by � j
t , from a proposal distribution q(� t j y t ; � t � 1; � ) to approximate p(� t j y t ; � t � 1; � ) :

Then, the particles are weighted and the corresponding normalized importance weights are

calculated; the latter is needed as we sample particles from the proposal distribution and

not the target distribution.

The importance weight of one particle might grow exponentially over time and, as

the number of iterations increases, all the probability mass will eventually be allocated

to that particle; that is, one particle could end up with normalized importance weight close
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to one, while the other particles' normalized importance weights would be close to zero.

This is known as weight degeneracy. Adding a resampling step can prevent the weight

degeneracy problem. Thus, the last step of the SMC algorithm is resampling. Resampling

means a new sequence of particles is replicated from the existing particles based on their

normalized importance weights. The simplest resampling method (and the one used in

this study) is called multinomial resampling. Speci�cally, in this study, we draw J random

variables with replacement from a multinomial distribution with probabilities W t , where

W t = [ W 1
t ::: W J

t ], and W J
t is obtained by Equation (3.4). As a consequence of this

resampling, the particles with small weights will be eliminated while those with large weights

will be duplicated. The resampled particle's weights are set equal towj
t = 1

N for t 2

f 1; : : : ; Tg, which forces the weights not to permanently degenerate. If resampling is done

at the end of every step, then the importance weight becomes

wj
t /

p
�
y t

�
�
� � j

t ; �
�

p
�
� j

t

�
�
� � j

t � 1; �
�

q
�
� j

t

�
�
� � j

0:t � 1; y1:t ; �
�

/ ~wj
t :

Andrieu et al. (2010) introduce an ancestor variable,A j
t , to keep track of the particles.

Instead of resampling� W



Algorithm 1 Sequential Monte Carlo

1: sample � j
0 � q(� 0 j � ) and set A j

0 = j
2: for t = 1 ; :::; T do

3: sample � j
t � q

�
� t

�
�
�
� y t ; �

A j
t � 1

t � 1 ; �
�

and set � j
0:t =

�
�

A j
t � 1

0:t � 1; � j
t

�

4: compute the weight:

wj
t =

p
�
� j

0:t ; y1:t ; �
�

p
�
� j

0:t � 1; y1:t � 1; �
�

q
�

� j
t

�
�
�
� y t ; �

A j
t � 1

t � 1 ; �
�

=
p

�
y t

�
�
� � j

t ; �
�

p
�

� j
t

�
�
�
� �

A j
t � 1

t � 1 ; �
�

q
�

� j
t

�
�
�
� y t ; �

A j
t � 1

t � 1 ; �
�

5: normalize the weight: W j
t = w j

tP J
k =1

wk
t

6: sampleA j
t from a multinomial distribution with support 1 to J and weights W t

7: end for

where

p(y t j y1:t � 1; � ) =
Z

p(� t � 1 j y1:t � 1; � ) p(� t j � t � 1; � ) p(y t j � t ; � ) d� t � 1:t ;

=
Z

wt p(� t � 1 j y1:t � 1; � ) q(� t j y t ; � t � 1; � ) d� t �



Chapter 4

Bayesian Inference

The values of the unknown parameters within the transition and measurement equations

need to be estimated. The estimation can be done by frequentist or Bayesian methods. Be-

cause Bayesian and frequentist inference di�er in their basic philosophies, the core features

of both paradigms are reviewed in the next section.

4.1 Comparison of Frequentist and Bayesian Paradigms

In frequentist estimation, any unknown model parameter is generally assumed constant.

The rationale is that even if a parameter cannot be observed, there exists one true value,

and randomness stems from natural deviations of anything unknown when experiments are

repeated. The fundamental measure of such uncertainty is captured by probability, which is

the limit of the relative frequency of an event in a very long, theoretically in�nite, sequence

of the same experiment conducted independently of each other. The results of a frequentist

approach can be represented by a con�dence interval or a hypothesis test. Con�dence in-

tervals use data from a sample to estimate a population parameter. For example, a100p%

con�dence interval includes the true but unknown value with con�dence p 2 (0; 1). However,

it is wrong to state that the unknown parameter lies with this interval with probability p.

Similarly, given a statistic to test a null hypothesis H0 related to the problem, the corre-

sponding frequentistp-value is not the probability that H0 is true, but rather the probability

of observing a result at least as extreme for the outcome under the null distribution in a

sequence of similar inferences.

Bayesian inference is di�erent from frequentist methods in multiple ways. First, the

probability actually expresses the chance of an event happening in this case. Second, un-

known parameters are treated as random variables that can be described with probability

distributions. Under the Bayesian paradigm, a probability expresses a degree of belief in

an event. Essentially, this methodology starts with a set of prior beliefs based on scienti�c

knowledge of the underlying problem. Then, one needs to update the prior belief in light of

the observed data to come up with posterior beliefs. In the end, one analyzes the model �t
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and sensitivity with respect to model assumptions. Because the model is set up via a full

probabilistic approach, any probabilistic statements can be immediately interpreted as such

without relating it to a sequence of independent repetitions. A 100p% probability interval

then expresses a range for the quantity of interest with coverage probabilityp, and a p-value

is interpreted as the probability of replicated data being more extreme than observed data

evaluated under a speci�ed test statistic.

We perform Bayesian inference conditional on observations to estimate the unknown

parameters as we want to assess the parameter uncertainty. Unlike the frequentist methods

that yield point estimates of unknown parameters, Bayesian methods yield a posterior

distribution of the unknown parameters, which allows us to understand their uncertainty.

4.2 Bayesian Inference

The fundamental usage of Bayesian inference is based on Bayes' theorem; that is, given the

probability distribution for the parameters of interest � and the data y1:T , the posterior

distribution for � , on which all inference is based, depends on the observed values. In

particular, the likelihood distribution represents the data generating mechanism.

In the case of state-space models, the likelihood has two forms: the marginal likelihood

and the complete data likelihood. The marginal likelihood is shown in Equation (3.5). In

constructing the marginal likelihood, we consider all possible values of latent variables that

can have been generated by observed data. Typically, the marginal likelihood is hard to

evaluate in closed form as it involves multidimensional integrals.

The complete data likelihood is constructed assuming that the values of the latent

variables are known. Indeed, it is not true, but the value of each latent variables can be

imputed as part of the estimation procedure when using Bayesian methods. In our case, the

complete data likelihood can be written as

L (y1:T ; � 0:T j � ) = p(� 0 j � )
TY

t=1

p(� t j � t � 1; � )
TY

t=1

p(y t j � t ; � ) ;

= p(� 0 j � ) p (� 1:T j � )
| {z }

Transition

p(y1:T j � 0:T ; � )
| {z }

Measurement

; (4.1)

where p(� t j � t � 1; � ) is the transition density obtained from Equation (3.1), the measure-

ment density p(y t j � t ; � ) is implied by the measurement equation of Equation (3.2), and

p(� 0 j � ) is the initial distribution for the latent factors. The prior belief on � are converted

into the probability distribution p(� ). Then, Bayes' theorem states that

p(� ; � 0:T j y1:T ) =
p(� ; � 0:T ; y1:T )

p(y1:T )
=

L (y1:T ; � 0:T j � ) p (� )
R

L (y1:T ; � 0:T j � ) p (� ) d�
;
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where the denominator

Z
L (y1:T ; � 0:T j � ) p (� ) d�

is a constant, leading to the following expression:

p(� ; � 0:T j y1:T )
| {z }

Posterior

/ L (y1:T ; � 0:T j � )
| {z }

Likelihood

p(� )
| {z }
Prior

; (4.2)

which summarizes the key elements of Bayesian inference. Each component of Equation

(4.2) is discussed in the rest of this section.

4.2.1 The Likelihood

A likelihood function takes the data set as given and gives all of the relevant information

to the evaluation of statistical evidence. The likelihood function can be obtained by using

Equation (4.1). The transition density can be obtained by using Equation (2.5), and the

general form of the measurement part of Equation (4.1) is given in Equation (3.3). Finally,

for the CBD-X(3) model, the measurement part of Equation (4.1) is given by:

p(y1:T j � 0:T ; � )

/ exp

0

@�
X

x;t

Dx;t

2

�
log ( bmx;t ) � � x � � (1)

t � � (2)
t (x � x) � � (3)

t ((x � x)2 � � 2
x )

� 2

1

A :

4.2.2 The Prior

The prior distribution plays a vital role in determining the posterior distribution. In practice,

prior distributions are speci�ed using available information, such as experts' opinions or the

results of previous studies. In this latter case, the prior distribution is called an informative

prior distribution. Similarly, if the prior does not contain any information based on prior

beliefs, it is called a non-informative prior distribution.

To obtain the posterior distribution within the CBD-X models, uniform prior distribu-

tions are assumed throughout this report, except for the variance (i.e.,vii ) and covariance

(i.e, vij for i 6= j ) parameters of the covariance matrix� in Equation (2.5).

The variance parametersvii are assumed to follow the half-normal distribution with a

mean parameter equal to0 and a variance equal to10 such that the variance parameters

vii have positive values. The variance value is chosen because a large value makes sure that

the distribution is proper and yet non-informative. The prior probability density function

(pdf) of the variance parameter vii is

f (vii ) / e
� v 2

ii
20 ; vii 2 (0; 1 ):
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The prior distribution of the covariance parameters vij follows a truncated-normal distri-

bution with the same mean and variance as the variance parameters, but are assumed to

be within the interval (� p vii vjj ; p vii vjj ) ensuring the correlation coe�cients between the

series are within (� 1; 1). The prior pdf of the covariance parametervij is

f
�
vij

�
�
� f vssg3

s=1

�
/

�
�

vijp
10

�

� 2�
� p vii vjjp

10

� ; vij 2 (�
p

vii vjj ;
p

vii vjj );

where � (x) is the standard normal distribution evaluated at x, and �( x) is its cumulative

distribution function evaluated at x as well.

4.2.3 The Posterior

The posterior distribution is the probabi4(the)-333(coeF36 7.nng)-348(the)(the)-3o0v



main sampling algorithms used in this study: the Metropolis-Hastings algorithm and the

Gibbs sampler.

4.3.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm is one of the most useful methods to construct

MCMC samples. The Markov chain constructed from this method asymptotically reaches a

unique stationary distribution � (� ; � 0:T j y1:T ), such that � (� ; � 0:T j y1:T ) approaches to

the target distribution p(� ; � 0:T j y1:T ).

This algorithm has two main ingredients: a proposal distribution and an acceptance

probability. The algorithm starts by setting initial parameters � (0) . Then, at iteration i and

depending on the previous parameter value� (i � 1) , the algorithm generates a candidate for

the new parameter value� (New) from a proposal distribution q
�
� (New)

�
�
� � (i � 1)

�
. Same as

the proposal distribution in the SMC algorithm, it can be any distribution. We de�ne the

transition density p
�
� (New)

�
�
� � (i � 1)

�
as the conditional probability of moving to � (New)

from � (i � 1) .

A su�cient but not necessary condition for the existence of stationary distribution is

that the Markov chain be reversible. A Markov chain is reversible if each transition is

reversible; that is, for every pair of parameters� (New) and � (i � 1) , the probability of being

in state � (i � 1) and transitioning to state � (New) must be equal to the probability of being

in state � (New) and transitioning to state � (i � 1) :

p
�
� (New)

�
�
� � (i � 1)

�
p

�
� (i � 1)

�
= p

�
� (i � 1)i � 1)

�
�

�
p

�
� (

�
� )� p

�
� (New)i�

�
( i � 1)

�
= q

�
� (New)i�

�
(i � 1)

� q
�
� (New��� (i � 1)

� � q
�
� (New��� (i � 1)

�







4.4.1 Conditional Sequential Monte Carlo

The PG sampler, introduced by Andrieu et al. (2010), is an extension of the Gibbs sampler.

Instead of generating random variables sequentially at each iteration, the PG sampler gen-

erates all random variables at the same time. The main idea of the PG sampler is to run a

conditional sequential Monte Carlo (cSMC) algorithm iteratively. The cSMC algorithm is

similar to the standard SMC algorithm introduced in Chapter 3, except that a pre-speci�ed

path � �
0:T is retained in all the resampling steps, whereas the remainingJ � 1 particles

are generated as in the standard SMC algorithm. For simplicity, we set the last particle

� J
t = � �

t , and its ancestor variableAJ
t = J for all t. The cSMC algorithm is summarized in

Algorithm 4.

Algorithm 4 Conditional Sequential Monte Carlo

1: sample � j
0 � q(� 0 j � ) for j = 1 ; :::; J � 1 and set � J

0 = � �
0

2: set A j
0 = j for j = 1 ; :::; J

3: for t = 1 ; :::; T do

4: sample � j
t � q

�
� t

�
�
�
� y t ; �

A j
t � 1

t � 1 ; �
�

5: set � j
0:t =

�
�

A j
t � 1

0:t � 1; � j
t

�
for j = 1 ; :::; J � 1, and set � J

t = � �
t

6: compute the weight for j = 1 ; :::; J :

wj
t =

p
�
� j

0:t ; y1:t ; �
�

p
�
� j

0:t � 1;y1:t � 1; �

�
j
0:� t ;

t;

J;:::;J � 1=;
]TJ/F35 10.9091





Algorithm 5 Particle Gibbs

1: set initial values � (0) and � (0)
0:T

2: for i = 1 ; :::; M do
3: for g = 1 ; :::; d do
4: � (i )

� g = [� (i )
1 ; : : : ; � (i )

g� 1; �



/ exp

 

�
TX

t=1

D̂x;t

2

�
log ( bmx;t ) � � x � � (1)
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+ ( a12b(1)
t + a22b(2)

t + a23b(3)
t )b(2)

t

+ ( a13b(1)
t + a23b(2)

t + a33b(3)
t )b(3)

t ;

and the full conditional posterior distribution of � 1 with uniform prior can be written as

f (� 1 j � � � 1 ; � 0:T )

/
TY

t=1

1
(2� )2 j� j

exp
�

�
1
2

(� t � � �
t )> � � 1 (� t � � �

t )
�
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so

� 1j � � � 1 ; � 0:T

� N

0

@
TX
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a11(� (1)
t � � (1)
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1
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Similarly,

� 2 j � � � 2 ; � 0:T

� N

0

@
TX

t=1

a22(� (2)
t � � (2)

t � 1) + a12(� (1)
t � � (1)

t � 1 � � 1) + a23(� (3)
t � � (3)

t � 1 � � 3)
a22T

;
1

a22T

1

A ;

and

� 3 j � � � 3 ; � 0:T

� N

0

@
TX

t=1

a33(� (3)
t � � (3)

t � 1) + a13(� (1)
t � � (1)

t � 1 � � 1) + a23(� (2)
t � � (2)

t � 1 � � 2)
a33T

:
1

a33T

1

A ;

For the variance (i.e., v11; v22; andv33) and covariance parameters (i.e,v12; v13; andv23)

of the covariance matrix � , there is no closed-form solution for the full conditional posterior

distribution. We thus apply the MH algorithm to update them with the prior distributions

discussed in the previous section. The proposal distributions for the variance parameters are

a truncated normal distribution centred at the values from the previous iteration and with

lower bound at zero to make sure the value of variance is positive. The proposal distribution

for the covariance parameters is a normal distribution centred at the last observation in the

chain.
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5.1, the early part of the chain for � (1)
1 behaves di�erently from the remaining part and is

discarded.

Figure 5.1: Trace plot of � (1)
1 with 3,000 particles and 120,000 iterations for the CBD-X(3)

model.

The remaining samples in the chain produced by the pMCMC method yield the posterior

distribution of each model parameter. For example, the posterior distribution of � 1 shown

in Figure 5.2.

When constructing a pMCMC algorithm, the speed of convergence should be within

the practical constraints of time and computational power. The speed of convergence is

mainly in�uenced by the number of iterations and the number of particles. The number of

iterations within a pMCMC algorithm represents the total sample size simulated for each

parameter, and the number of particles determines how many particles are used in the

cSMC algorithm at each iteration. The number of iterations required for convergence varies

from application to application. However, several tests can assess convergence. We choose

the number of iterations and the number of particles by �rst looking at the trace plots. We

then apply the Gelman-Rubin test to perform further convergence diagnostics. These tests

will be discussed in Section 5.2.1.

The algorithm set-up for each model is summarized in Table 5.1. There are more parti-

cles in the CBD-X(3) model than for the other two models because it has three period-e�ect

factors. Thus, it needs more particles in the cSMC algorithm to generate consistent approx-

imations. Usually, we will set more iterations for models with more parameters as conver-

gence tends to be slower in these cases. However, we use fewer iterations for the CBD-X(3)
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model than the CBD-X(2) model to save on the run-time as we have more particles in the

CBD-X(3) model.

Figure 5.2: Trace plot of � 1 with 3,000 particles after burn-in period within the CBD-X(3)
model (left-hand side) and the corresponding posterior distribution (right-hand side).

Model Numbers of Iterations (M ) Burn-In Period Numbers of Particles (J )
CBD-X(1) 30;000 6;000 500
CBD-X(2) 300;000 60;000 500
CBD-X(3) 120;000 24;000 3;000

Table 5.1: Algorithm set-up for each model.

5.2.1 Convergence Diagnostics

As noted above, the outputs of the CBD-X models under the pMCMC algorithm must

be diagnosed for convergence before performing any type of statistical inference. To assess

convergence, we look at the trace plot �rst. Trace plots give insight into the behaviour of the

Markov chain and point out possible �aws in the algorithm. If the pMCMC chain is stuck

in some part of the state space, the trace plots show �at bits indicating slow convergence.



shown in Figure 5.3. Therefore, using 1,000 particles is not enough for the CBD-X(3) model

to converge, and we increased the number of particles to 3,000 for this model. If too many

proposed values are accepted consecutively, trace plots may move slowly and not explore

the rest of the state space. If a trace plot exhibits rapid up-and-down variation with no



which measures how the means in each chain vary around the overall mean. The within-chain

variance is given by:

W =
1
H

HX

h=1

�̂ 2
h ;



5.2.2 Estimated Parameters

A few 95% posterior credible intervals for each parameter are shown in Figues 5.5 to 5.8.

Credible intervals are an important concept in Bayesian statistics. Their core purpose is to

describe and summarize the uncertainty related to the unknown estimated parameters. A

credible interval is an interval that contains a value with a certain probability. For instance,

a 95% posterior credible intervals for � x�x95%



Figure 5.6: 95% posterior credible intervals for � (1)
t from 1959to 2008. The solid line is the

mean value of� (1)
t .

Figure 5.7: 95% posterior credible intervals for � (2)
t from 1959to 2008. The solid line is the

mean value of� (2)
t .
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Figure 5.8: 95% posterior credible intervals for � (3)
t from 1959to 2008. The solid line is the

mean value of� (3)
t .

5.2.3 Forecasting Death Rates

Once a su�ciently large sample of the posterior distribution of the latent variables � t and

parameters� are simulated, they are used to forecast death rates. We incorporate di�erent

sources of uncertainty in forecast intervals by using the following steps. We draw simulated

values of the parameters� and the latent variables at the �nal year (i.e., � T ) at random

from the pMCMC outputs after discarding the burn-in period. Then, we predict the future

period-e�ect factor � T + h , where h are years afterT, by using the random walk structure

we imposed for the period e�ect in Equation (2.5). We compute the forecasted death rates

m T + h by using the predicted latent variables � T + h and the parameters sampled from the

pMCMC output. We repeat this process 10,000 times to get a distribution of the forecasted

death rates.



Figure 5.9: 10-year out-of-sample forecasted death rates for the Canadian male population
under CBD-X models. The solid line shows the observed̂mx;t for age65 from 2009to 2018.
Shaded areas are95% credible intervals.
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Figure 5.10:10-year out-of-sample forecasted death rates for the Canadian male population
under CBD-X models. The solid line shows the observed̂mx;t for age75 from 2009to 2018.
Shaded areas are95% credible intervals.
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Figure 5.11:10-year out-of-sample forecasted death rates for the Canadian male population
under CBD-X models. The solid line shows the observed̂mx;t for age85 from 2009to 2018.
Shaded areas are95% credible intervals.
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5.2.4 Model Selection

The problem of model selection requires us to consider two competing notions: one is a mea-

sure of model �t that promotes selecting more accurate models, and the other is a measure

of model complexity. The deviance information criterion (DIC) proposed by Spiegelhalter

et al. (2002) is a useful method in Bayesian model selection. Under the DIC, the goodness

of �t is measured by the posterior mean deviance, denoted byDeviance(	 ). The deviance

is de�ned as

Deviance(	 ) = � 2 log (L (y1:T ; � 0:T j



Model DIC pD Posterior Mean Deviance

CBD-X(1) 12;547:210 87:718 12;459:490

CBD-X(2) 1;563:776 184:093 1;392:704

CBD-X(3) 766:372 387:507 378:864

Table 5.2: Deviance information criterion for CBD-X models.
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Chapter 6

Forecasting Performance In
Di�erent Estimation Methods

One of the advantages of using the Bayesian method is that we can incorporate all the

uncertainty within our model estimation and forecasting. This chapter investigates the

impact of including the uncertainty by comparing the forecasting performance of the CBD-

X(3) model estimated under the maximum likelihood method to that estimated under the

pMCMC method. We only compare the performance in the CBD-X(3) model because it

has the best performance in both model selection and forecasting, as shown in the previous

chapter.

The maximum likelihood method in this chapter is di�erent from the two-stage maxi-

mum likelihood estimation method we introduced at the beginning of Chapter 3. Instead

of estimating all the parameters (i.e., � and � 0:T ) by using a frequentist method as in the

two-stage maximum likelihood estimation method, the maximum likelihood method in this

chapter is only used to estimate the unknown parameters� by means of the PF. That

is to say, the mortality model is still in a state-space representation as in Chapter 3 but

instead of applying the Bayesian method to estimate the unknown parameters� , we use

a frequentist method and speci�cally, the MLE. First, we use the mean of the posterior

distribution of � from pMCMC as the starting value to maximize the likelihood function

obtained in the SMC algorithm (i.e., Equation (3.5)) of the CBD-X(3) model by using the

Nelder and Mead (1965) method. Then, the latent variables� 0:T are estimated from the

SMC algorithm with the optimal value of � obtained from MLE.

Similar to the forecasting algorithm in the pMCMC estimation introduced in Chapter

5, the latent variables � T + h are predicted using the random walk model for the period

e�ect; that is, Equation (2.5). Then, we compute the forecasted death ratem T + h by using

the predicted latent variables � T + h and the constant parameters� obtained by MLE. We

repeat this process 10,000 times to get a distribution of the forecasted death rate.

The 95%con�dence intervals under MLE and the 95%credible intervals under pMCMC

of the 10



ages65, 70, 75, 80, 85, and 89



Figure 6.2: 10-year out-of-sample forecasted death rates for the Canadian male population
under MLE method (shaded purple area) and pMCMC method (shaded green area). The
solid line shows the observed̂mx;t for age 70 from 2009 to 2018.

Figure 6.3: 10-year out-of-sample forecasted death rates for the Canadian male population
under MLE method (shaded purple area) and pMCMC method (shaded green area). The
solid line shows the observed̂mx;t for age 75 from 2009 to 2018.
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Figure 6.4: 10-year out-of-sample forecasted death rates for the Canadian male population
under MLE method (shaded purple area) and pMCMC method (shaded green area). The
solid line shows the observed̂mx;t for age 80 from 2009 to 2018.

Figure 6.5: 10-year out-of-sample forecasted death rates for the Canadian male population
under MLE method (shaded purple area) and pMCMC method (shaded green area). The
solid line shows the observed̂mx;t for age 85 from 2009 to 2018.
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Figure 6.6: 10-year out-of-sample forecasted death rates for the Canadian male population
under MLE method (shaded purple area) and pMCMC method (shaded green area). The
solid line shows the observed̂mx;t for age 89 from 2009 to 2018.
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Chapter 7

Conclusion

This report presented a Bayesian method�speci�cally the pMCMC method�to estimate

CBD-X models combining features of the LC and CBD models. By using this method, the

dynamics of the period e�ect � 0:T can be incorporated within the model estimation. Also,

parameter uncertainty can be obtained readily and used in calculating forecasting intervals.

First, the CBD-X model was recast into state-space formulation. By doing so, we were

able to incorporate the dynamics of period e�ects into the model estimation. Although the

dynamics of the period e�ects in our models are linear and Gaussian, we still applied the

SMC method to allow for more �exibility in choosing the structure of period e�ects in the

future.

Second, a Bayesian approach was used to estimate the unknown parameters� and their

uncertainty, as Bayesian approaches yield posterior distributions of model parameters as well

as mortality rates. A sampling-based approach called MCMC was used because we cannot

derive the closed-from solution of joint posterior distributions for unknown parameters. The

models were estimated based on Canadian male mortality data.

After �tting the models, we were able to perform model comparison and predictions.

The CBD-X(3) model is the best model as it leads to the smallest DIC values and the best

forecasting performance. Its95%credibility intervals of the 10-year out-of-sample forecasted

death rate capture the observed death rates in most cases.

To assess how including the parameter uncertainty in�uenced the forecasting perfor-

mance, we compared the95%con�dence intervals obtained with pMCMC to those obtained

with MLE for 10-year out-of-sample forecasted death rates. We observed that the95%

con�dence intervals are generally smaller than the95% credibility intervals. Thus, in con-

trast to frequentist estimation methods, the Bayesian approach captures more uncertainty

in forecasting�consistently with the fact that mortality models' parameter uncertainty is

large.

The Bayesian-based estimation approach proposed in this report is �exible and easy to

implement as it can be applied to other mortality models. For future extensions, one pos-

sible direction would be applying this estimation approach for multi-population mortality
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models. Due to globalization, di�erent populations' mortality are closely linked together.

Therefore, developing multi-population mortality models to analyze and forecast the mor-

tality of more than one population in a joint way, such as modelling population between

di�erent countries, is of paramount importance. Another possible extension of our work

would include the addition of cohort e�ects within model estimation as it might improve

the model performance. Changing the structure of period e�ects might also be another

interesting avenue for future research.
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Appendix A

Distribution of the Error Term

The standard actuarial approach in mortality modelling assumes that, conditional on the
model central death rate mx;t and the observed exposureŝEx;t , the observed number of
deaths D̂x;t has a Poisson distribution with mean and variance both equal tomx;t Êx;t .1

Cairns et al. (2016) assumes that for eacht and x, the observed number of deathsD̂x;t is
conditionally independent and has a lognormal distribution; that is, log(D̂x;t ) has a nor-
mal distribution with mean � d and variance � 2

d. The lognormal distribution is chosen for
computational convenience. As in Cairns et al. (2016), we equate the mean and variance
of the lognormal distribution to the mean and variance of a matching Poisson distribution.
By matching the mean, we obtain:

mx;t Êx;t = exp

 

� d +
� 2

d

2

!

;

which is equivalent to

� d = log( mx;t Êx;t ) �
� 2

d

2
:

By matching the variance, on the other hand, we have

mx;t Êx;t =
�
exp(� 2

d) � 1
�

exp
�
2� d + � 2

d

�
;

so

�
exp(� 2

d) � 1
�

=
mx;t Êx;t

exp
�
2 log(mx;t Êx;t ) � � 2

d + � 2
d

�

=
1

mx;t Êx;t
=

1
mx;t Ex;t

1 In this report, the observed and theoretical exposures are assumed to be the same, i.e.,Ex;t = Êx;t
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=
1

Dx;t
:

By using the �rst-order Taylor series expansion about zero, we have that:

exp(x) � 1 � x;

thus, � 2
d � 1

D x;t
. Since Dx;t is unobserved, we use the observed number of deathŝDx;t to



Appendix B

Summary Tables

The Gelman-Rubin test for each CBD-X models are summarized in the following tables.

CBD-X(1) Model Mean Standard Deviation Gelman-Rubin Test



CBD-X(1) Model Mean Standard Deviation Gelman-Rubin Test

� 21



CBD-X(1) Model Mean Standard Deviation Gelman-Rubin Test

� (1)
29



CBD-X(2) Model Mean Standard Deviation Gelman-Rubin Test

� 1 � 3:438 0:025 1:000

� 2 � 3:372 0:024 1:000

� 3 � 3:276 0:023 1:000

� 4 � 3:198 0:022 1:000

� 5 � 3:111 0:021 1:000

� 6 � 3:021 0:021 1:000

� 7 � 2:956 0:020 1:000

� 8 � 2:852 0:019 1:000

� 9 � 2:772 0:019 1:000

� 10 � 2:683 0:018 1:000

� 11 � 2:600 0:018 1:000

� 12 � 2:518 0:018 1:000

� 13 � 2:434 0:018 1:000





CBD-X(2) Model Mean Standard Deviation Gelman-Rubin Test

� (1)
42 � 0:479 0:018 1:000

� (1)
43 � 0:513 0:018 1:000

� (1)
44 � 0:532 0:018 1:000

� (1)
45 � 0:553 0:018 1:000

� (1)
46 � 0:592 0:018 1:000

� (1)
47 � 0:616 0:018 1:000

� (1)
48 � 0:663 0:018 1:000

� (1)
49 � 0:666 0:018 1:000

� (1)
50 � 0:690 0:018 1:000

� (2)
1 � 0:001 0:001 1:000

� (2)
2 � 0:002 0:001 1:000

� (2)
3 � 0:003 0:001 1:000

� (2)
4 � 0:002 0:001 1:000

� (2)
5 � 0:001 0:001 1:000

� (2)
6 � 0:002 0:001 1:000

� (2)
7 � 0:002 0:001 1:000

� (2)
8 � 0:003 0:001 1:000

� (2)
9 � 0:005 0:001 1:000

� (2)
10 � 0:005 0:001 1:000

� (2)
11 � 0:006 0:001 1:000

� (2)
12 � 0:007 0:001 1:000

� (2)
13 � 0:004 0:001 1:000

� (2)
14 � 0:005 0:001 1:000

� (2)
15 � 0:003 0:001 1:000

� (2)
16 � 0:004 0:001 1:000

� (2)
17 � 0:003 0:001 1:000

� (2)
18 � 0:003 0:001 1:000

� (2)
19 � 0:004 0:001 1:000

� (2)
20 � 0:003 0:001 1:000

� (2)
21 � 0:004 0:001 1:000

� (2)
22 � 0:003 0:001 1:000

� (2)
23 � 0:002 0:001 1:000

� (2)
24 � 0:002 0:001 1:000
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CBD-X(2) Model Mean Standard Deviation Gelman-Rubin Test

� (2)
25 � 0:001 0:001 1:000

� (2)
26 � 0:000 0:001 1:000

� (2)
27 0:001 0:001 1:000

� (2)
28 0:002 0:001 1:000

� (2)
29 0:002 0:001 1:000

� (2)
30 0:004 0:001 1:000

� (2)
31 0:005 0:001 1:000

� (2)
32 0:006 0:001 1:000

� (2)
33 0:008 0:001 1:000

� (2)
34 0:009 0:001 1:000

� (2)
35 0:010 0:001 1:000

� (2)
36 0:010 0:001 1:000

� (2)
37 0:011 0:001 1:000

� (2)
38 0:011 0:001 1:000

� (2)
39 0:013 0:001 1:000

� (2)
40 0:014 0:001 1:000

� (2)
41 0:016 0:001 1:000

� (2)
42 0:016 0:001 1:000

� (2)
43 0:017 0:001 1:000

� (2)
44 0:017 0:001 1:000

� (2)
45 0:018 0:001 1:000

� (2)
46 0:018 0:001 1:000

� (2)
47 0:019 0:001 1:000

� (2)
48 0:020 0:001 1:000

� (2)
49 0:019 0:001 1:000

� (2)
50 0:020 0:001 1:000

v11 0:000 0:000 1:000

v22 0:000 0:000 1:000

v12 0:000 0:000 1:000

� 1 � 0:013 0:003 1:000

� 2 0:000 0:000 1:000
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CBD-X(3)Model Mean StandardDeviation Gelman-RubinTest

�

(1)9
�0:060 0:016 1:006

�
(1)10

�0:046 0:017 1:006

�
(1)11

�0:057 0:016 1:006

�
(1)12

�0:071 0:016 1:006

�
(1)13

�0:081 0:016 1:006

�
(1)14

�0:068 0:016 1:006

�
(1)15

�0:077 0:016 1:006

�
(1)16

�0:076 0:016 1:006



CBD-X(3) Model Mean Standard Deviation Gelman-Rubin Test

� (1)
42 � 0:438 0:016 1:006

� (1)
43 � 0:471 0:016 1:006

� (1)
44 � 0:487 0:016 1:006

� (1)
45 � 0:508 0:016 1:006

� (1)
46 � 0:547 0:016 1:006

� (1)
47 � 0:570 0:016 1:006

� (1)
48 � 0:617 0:016 1:006

� (1)
49 � 0:620 0:016 1:006

� (1)
50 � 0:643 0:016 1:006

� (2)
1 � 0:001 0:001 1:002

� (2)
2 � 0:002 0:002 1:002

� (2)
3 � 0:003 0:002 1:002

� (2)
4 � 0:001 0:002 1:002

� (2)
5 � 0:000 0:002 1:002

� (2)
6 � 0:002 0:002 1:002

� (2)
7 � 0:002 0:002 1:002

� (2)
8 � 0:002 0:002 1:002

� (2)
9 � 0:004 0:002 1:002

� (2)
10 � 0:004 0:002 1:002

� (2)
11 � 0:005 0:002 1:002

� (2)
12 � 0:006 0:002 1:002

0:



CBD-X(3) Model Mean Standard Deviation Gelman-Rubin Test

� (2)
25 � 0:001 0:002 1:002

� (2)
26 0:000 0:002 1:002

� (2)
27 0:001 0:002 1:002

� (2)
28 0:002 0:002 1:002

� (2)
29 0:002 0:002 1:002

� (2)
30 0:005 0:002 1:002

� (2)
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