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Abstract

Fractional factorial designs are useful for collecting data in many fields of studies because

they allow us to study the effects of many factors on the response. As the primary interest

of most experiments is for screening important factors, interactions are generally assumed

to be negligible. When some two-factor interactions are important, variance-optimal designs

and bias-optimal designs are available. In this study, we compare these two types of designs

by using a mean squared error criterion that takes effect sparsity into consideration. We

obtain a closed-form expression of this mean squared error criterion for the two types of

designs. Under different levels of sparsity, results are obtained for designs of 10, 12, 14, 20,

26, 28 runs, which will help practitioners to choose between the two types of designs.

Keywords: Effect sparsity; foldover design; mean squared error criterion; orthogonal array
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Chapter 1

Introduction

Factorial designs are useful for examining which factors have primary effects on a response

variable in a factor-screening experiment (Cheng, 2016). In general, a two-level factorial

design consists of two or more factors, where each factor has two levels represented by ±1.

Each combination of levels of the factors is called a treatment or a run, and the change

caused by a treatment or a run to the response is called an effect. A full factorial design

consists of all possible combinations of the factors, and it requires a run size to be a power

of two when there are two levels per factor. We use m to denote the number of factors

in a two-level factorial design. Given that m factors are to be studied, at least 2m runs

are needed in order to estimate all 2m − 1 effects. However, higher-order interaction effects

are generally not expected to be important in a screening experiment. Fractional factorial

designs are more popular because they allow us to study the effects of multiple factors using

only a fraction of runs from a full factorial design. One consequence of using a fractional

factorial design is that some effects may not be distinguishable from other effects, and this

is known as aliasing or confounding. There are two common ways to construct fractional

factorial designs, which give rise to regular and nonregular designs.

A regular design is generally referred to as a 2m−



the two remaining factors, we use generators D=AB and E=AC, meaning that the column

for factor D is obtained by multiplying the elements in the columns of A and B, and the

column for factor E is obtained by multiplying columns A and C. The effects in a 2m−p

fractional factorial design are either orthogonal or fully aliased.

Nonregular designs such as Plackett-Burman designs (Plackett & Burman, 1946) are

orthogonal arrays, which can be obtained by selecting columns from a Hadamard matrix. A

Hadamard matrix is a square matrix of entries ±1 with orthogonal columns. For example,

to create an orthogonal array for five factors and eight runs, we select any five columns from

an 8 × 8 Hadamard matrix with an exception of a column of all +1’s. The main difference

between a regular design and a nonregular design is that, for a nonregular design, two effects

can be partially aliased. The run sizes of nonregular designs are more flexible than regular

designs, and they only need to be multiples of four.

We consider the problem of estimating main effects, but allow possible existence of two-

factor interactions (2fis). In this case, orthogonal arrays and nearly orthogonal arrays are

variance-optimal but not bias-optimal. On the other hand, non-orthogonal foldover designs

as considered by Margolin (1969) and further studied by Miller and Sitter (2005) are bias-

optimal but not variance-optimal. The thrust of this project is to evaluate and compare

these two types of designs using a mean squared error criterion that takes effect sparsity

into consideration.

We now give an overview. In Chapter 2, we introduce linear models, discuss orthogonal



Chapter 2

Methodology

Section 2.1 introduces two linear models that are used in our study. In Section 2.2, we

provide construction details and properties of variance-optimal designs, orthogonal arrays

and related designs. We discuss bias-optimal designs, those given by foldover designs in

Section 2.3. Lastly, an MSE criterion with consideration of sparsity for comparing the two

types of designs is presented in Section 2.4.

2.1 Two Linear Models

Consider a fractional factorial design involving m ⩾ 2



E(β̂(1)) = (XT
1 X1)−1XT

1 E(Y )

= (XT
1 X1)−1XT

1 X1β(1)

= β(1)



β̂(1) = (XT
1 X1)−1XT

1 Y now has an expectation

E(β̂(1)) = (XT
1 X1)−1XT

1 E(Y )

= (XT
1 X1)−1XT

1 (X1β(1) + X2β(2))

= (XT
1 X1)−1XT

1 X1β(1) + (XT
1 X1)−1XT

1 X2β(2)

= β(1) + (XT
1 X1�

1 E



an OA(8, 24, 3):

A B C D

1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

−1 1 1 −1

−1 1 −1 1

−1 −1 1 1

−1 −1 −1 −1

In this example, the eight triplets, (1, 1, 1), (1, 1, −1), (1, −1, 1), (1, −1, −1), (−1, 1, 1),

(−1, 1, −1), (−1, −1, 1), (−1, −1, −1) appear exactly once in any three columns. Further-

more, each column in this array is orthogonal to another column and is also orthogonal to

the products of any two columns. This implies that we can obtain unbiased estimates for

the main effects even when some 2fis are important. In general, OAs of strength three allow

main effects to be estimated with minimum variance and without bias. A disadvantage of

OAs of strength three is that the run size needs to be a multiple of eight. For run sizes of

12, 20 and 28 in our study, no OAs of strength three can exist. In this situation, we consider

using OAs of strength two, which still optimize the variance, but the estimate of β̂(1) is no

longer unbiased if not all 2fis are negligible. OAs of strength two are optimal for estimating

the main effects, but they require run sizes to be multiples of four. If a design of run size

n when n is even but not a multiple of four is desired, we can obtain an optimal design

by adding two specific runs to an OA. The resulting nearly orthogonal array (NOA) is still

optimal. This result, avaiable in Dey and Mukerjee (1999), is given below.

Lemma 1. The design obtained by adding two runs of form `1 = (1, . . . , 1) and `2 =

(1, . . . , 1, −1, . . . , −1) to an orthogonal array is universally optimal and hence A-optimal.

The first run `1 is a vector containing m +1’s. The second run `2 is a vector of m1 +1’s

and m2 −1’s, where m1 is the largest integer that is smaller than or equal to m/2, and

6



m2 is the smallest integer that is greater than or equal to m/2. For example, in order to

construct a 10-run NOA with 5 factors, we first obtain an OA(8, 25, 2) matrix by selecting

five columns from an 8 × 8 Hadamard matrix, as displayed below:

A B C D E

1 1 1 1 1

−1 1 −1 1 −

AC D E1 e 1 1 1�







Chapter 3

Results

Section 3.1 presents the results of our study. We compare the MSEs of variance-optimal



Table 3.1: Comparison of variance, bias and MSE for OA/NOA and BFD when all 2fis are
important

OA/NOA BFD

n m C = τ
σ Variance Bias MSE Variance Bias MSE

10 5 0.025 0.536 0.004 0.539 0.556 0 0.556

0.05 0.536 0.014 0.55 0.556 0 0.556

0.1 0.536 0.057 0.592 0.556 0 0.556



20 10 0.025 0.5 0.013 0.513 0.556 0 0.556

0.05 0.5 0.053 0.553 0.556 0 0.556

0.1 0.5 0.211 0.711 0.556 0 0.556

0.25 0.5 1.32 1.82 0.556 0 0.556

0.5 0.5 5.28 5.78 0.556 0 0.556

1 0.5 21.12 21.62 0.556 0 0.556

2 0.5 84.48 84.98 0.556 0 0.556

26 13 0.025 0.513 0.023 0.536 0.52 0 0.52

0.05 0.513 0.091 0.604 0.52 0 0.52

0.1 0.513 0.362 0.875 0.52 0 0.52

0.25 0.513 2.265 2.778 0.52 0 0.52

0.5 0.513 9.058 9.571 0.52 0 0.52

1 0.513 36.232 36.745 0.52 0 0.52

2 0.513 144.928 145.441 0.52 0 0.52

28 14 0.025 0.5 0.028 0.528 0.538 0 0.538

0.05 0.5 0.111 0.611 0.538 0 0.538

0.1 0.5 0.443 0.943 0.538 0 0.538

0.25 0.5 2.77 3.27 0.538 0 0.538

0.5 0.5 11.082 11.582 0.538 0 0.538

1 0.5 44.327 44.827 0.538 0 0.538

2 0.5 177.306 177.806 0.538 0 0.538

From Table 3.1, we observe that the MSEs for variance-optimal designs are small at lower

values of C. This makes sense when we look back at equation (2.4), where the variance

of estimated main effects remains unchanged for both variance-optimal and bias-optimal

designs as τ changes, but the bias varies with τ for variance-optimal designs. Thus, when τ

12



is small, the bias (and correspondingly the MSE) for variance-optimal designs is also small.

We see that before C reaches a boundary point, the MSE of a variance-optimal design is

smaller than the MSE of a bias-optimal design, and this suggests that designs such as OAs

and NOAs are better than BFDs at lower values of C. For example, between the two designs

of 14 runs, when C < 0.25, the NOA gives lower ∆ values than the BFD, and this indicates

that practitioners should consider using the NOA as it performs better than the BFD.

But, when sparsity is considered, for instance, suppose 50% of 2fis are nonnegligible,

that is when π = 1/2, the bias of the NOA with seven factors needs to be multiplied by π

based on Equation (2.4), which gives a smaller value of ∆ than the one with a full set of

important 2fis. Table 3.2 provides the C∗ values for different designs and different levels of

sparsity when C = τ
σ < C∗, variance-optimal designs are better than bias-optimal designs.

Taking n = 14 as an example, C∗ values are 0.157, 0.222, and 0.314 for π = 1, 1/2 and 1/4,



Figure 3.1: Comparisons of ∆ values of variance-optimal design (red line) and bias-optimal
design (blue line) for n = 14 when π = 1, 1/2, 1/4, 1/8, 1/16, 1/32
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Figure 3.2: Change of C∗ values at different π for designs of 14 runs
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3.2 An Alternative Design



rounded up to three decimal places. For example, when all 2fis are significant, that is when

π = 1, as long as 0.065 < C = τ
σ < 0.219, the alternative design is the best among the three

designs. Figure 3.3 displays a more detailed comparison of the ∆ values of the three types

of designs: alternative design (green line), variance-optimal design (red line), bias-optimal

design (blue line) for different C values for different given π values. As clearly shown in

Figure 3.3, the variance-optimal design is the best if C < C1; the alternative design is the

best if C1 < C < C2; and the bias-optimal design is the best if C > C2.

Table 3.3: Range of C Values for Alternative Design to be the Optimal Design with 14 Runs

π = 1 π = 1/2 π = 1/4 π = 1/8 π = 1/16 π = 1/32

C1 0.065 0.091 0.129 0.182 0.257 0.363

C2 0.219 0.309 0.437 0.618 0.873 1.235

17



Figure 3.3: Comparisons of ∆ values of alternative design (green line), variance-optimal
design (red line) and bias-optimal design (blue line) for n =14 when π = 1, 1/2, 1/4, 1/8,
1/16, 1/32
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Appendix A

Variance-optimal Designs

For n=10,

A B C D E
1 1 1 1 1

−1 1 −1 1 −1
1 −1 −1 1 1

−1 −1 1 1 −1
1 1 1 −1 −1

−1 1 −1 −1 1
1 −1 −1 −1 −1

−1 −1 1 −1 1
1 1 1 1 1
1 1 −1 −1 −1

For n=12,

A B C D E F
1 −1 −1 −1 1 −1
1 1 −1 1 1 1
1 1 1 −1 −1 −



For n=14,

A B C D E F G
−1 −1 1 −1 1 1 −1
−1 −1 −1 1 −1 1 1

1 −1 −1 −1 1 −1 1
−1 −1 −1 −1 −1 −1 −1

1 1 −1 −1 −1 1 −1
1 1 1 −1 −1 −1 1
1 1 −1 1 1 1 −1

−1 1 −1 1 1 −1 1
1 −1 1 1 −1 1 1
1 −1 1 1 1 −1 −1

−1 1 1 −1 1 1 1
−1 1 1 1 −1 −1 −1

1 1 1 1 1 1 1
1 1 1 −1 −1 −1 −1

For n=20,

A B C D E F G H I J
1 1 −1 −1 1 1 1 1 −1 1
1 1 −1 1 −1 1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1
1 −1 1 1 −1 −1 1 1 1 1
1 1 1 −1 1 −1 1 −1 −1 −1

−1 1 −1 1 −1 −1 −1 −1 1 1
1 1 −1 1 1 −1 −1 1 1 1
1 −1 −1 1 1 1 1 −1 1 −1

−1 −1 −1 1 1 −1 1 1 −1 −1
−1 1 1 1 1 −1 1 −1 1 −1
−1 1 1 −1 1 1 −1 −1 1 1
−1 −1 1 1 −1 1 1 −1 −1 1

1 1 1 1 −1 1 −1 1 −1 −1
1 −1 1 −1 −1 −1 −1 1 1 −1

−1 1 −1 −1 −1 −1 1 1 −1 1
1 −1 −1 −1 −1 1 1 −1 1 1

−1 −1 1 1 1 1 −1 1 −1 1
−1 −1 −1 −1 1 1 −1 1 1 −1

1 −1 1 −1 1 −1 −1 −1 −1 1
−1 1 1 −1 −1 1 1 1 1 −1
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For n=26,

A B C D E F G H I J K L M



For n=28,

A B C D E F G H I J K L M N
1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 −1 −1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
1 −1 1 1 1 1 −1 −1 −1 −1 1 −1 −1 −1
1 −1 −1 −1 1 −1 −1 1 −1 1 −1 1 −1 1

−1 −1 1 1 −1 −1 1 −1 −1 −1 1 1 1 1
1 −1 −1 1 −1 −1 −1 −1 1 1 1 −1 1 1
1 1 1 −1 −1 −1 1 1 −1 1 −1 −1 1 −1

−1 1 −1 −1 1 −1 1 −1 −1 −1 1 1 −1 1
1 −1 1 1 1 −1 1 −1 1 −1 −1 −1 1 −1

−1 1 1 1 1 1 −1 −1 −1 1 −1 −1 −1 1
1 1 1 −1 −1 −1 −1 1 1 −1 1 −1 −1 1
1 −1 1 −1 1 1 −1 1 1 −1 1 1 1 1
1 1 −1 1 1 −1 −1 1 1 1 1 1 −1 −1

−1 1 −1 −1 −1 1 −1 −1 1 1 1 −1 1 −1
−1 1 −1 1 −1 −1 −1 1 −1 −1 1 1 1 −1
−1 −1 −1 −1 1 1 1 1 1 −1 1 −1 1 −1
−1 −1 1 −1 1 −1 −1 −1 1 1 −1 1 1 1
−1 1 1 1 −1 1 −1 1 1 −1 −1 −1 −1 1

1 1 −1 1 −1 1 1 −1 1 1 −1 1 1 1
−1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1

1 1 −1 1 1 1 −1 −1 −1 −1 −1 1 1 −1
−1 1 1 −1 1 1 1 −1 1 1 1 1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

1 −1 1 1 −1 1 1 1 −1 1 1 1 −1 −1
−1 −1 −1 1 −1 1 1 1 1 −1 −1 1 −1 1
−1 −1 −1 1 1 −1 1 1 1 1 −1 −1 −1 −1
−1 1 1 1 1 −1 1 1 −1 1 1 −1 1 1

1 1 1 −1 −1 −1 1 −1 1 −1 −1 1 −1 −1
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Appendix B

Bias-optimal Designs

For n=10,

A B C D E
1 1 1 −1 1
1 1 −1 1 1
1 −1 1 1 1

−1 1 1 1 1
−1 −1 −1 −1 1



For n=14,

A B C D E F G
1 −1 −1 −1 −1 −1 −1

−1 1 −1 −1 −1 −1 −1
−1 −1 1 −1 −1 −1 −1
−1 −1 −1 1 −1 −1 −1
−1 −1 −1 −1 1 −1 −1
−1 −1 −1 −1 −1 1 −1
−1 −1 −1 −1 −1 −1 1
−1 1 1 1 1 1 1

1 −1 1 1 1 1 1
1 1 −1 1 1 1 1
1 1 1 −1 1 1 1
1 1 1 1 −1 1 1



For n=26,

A B C D E F G H I J K L M
1 1 −1 1 −1 −1 −1 −1 −1 1 −1 −1 −1

−1 1 1 −1 1 −1 −1 −1 −1 −1 1 −1 −1
−1 −1 1 1 −1 1 −1 −1 −1 −1 −1 1 −1
−1 −1 −1 1 1 −1 1 −1 −1 −1 −1 −1 1

1 −1 −1 −1 1 1 −1 1 −1 −1 −1 −1 −1
−1 1 −1 −1 −1 1 1 −1 1 −1 −1 −1 −1
−1 −1 1 −1 −1 −1 1 1 −1 1 −1 −1 −1
−1 −1 −1 1 −1 −1 −1 1 1 −1 1 −1 −1
−1 −1 −1 −1 1 −1 −1 −1 1 1 −1 1 −1
−1 −1 −1 −1 −1 1 −1 −1 −1 1 1 −1 1

1 −1 −1 −1 −1 −1 1 −1 −1 −1 1 1 −1
−1 1 −1 −1 −1 −1 −1 1 −1 −1 −1 1 1

1 −1 1 −1 −1 −1 −1 −1 1 −1 −1 −1 1
−1 −1 1 −1 1 1 1 1 1 −1 1 1 1

1 −1 −1 1 −1 1 1 1 1 1 −1 1 1
1 1 −1 −1 1 −1 1 1 1 1 1 −1 1
1 1 1 −1 −1 1 −1 1 1 1 1 1 −1

−1 1 1 1 −1 −1 1 −1 1 1 1 1 1
1 −1 1 1 1 −1 −1 1 −1 1 1 1 1
1 1 −1 1 1 1 −1 −1 1 −1 1 1 1
1 1 1 −1 1 1 1 −1 −1 1 −1 1 1
1 1 1 1 −1 1 1 1 −1 −1 1 −1 1
1 1 1 1 1 −1 1 1 1 −1 −1 1 −1

−1 1 1 1 1 1 −1 1 1 1 −1 −1 1
1 −1 1 1 1 1 1 −1 1 1 1 −1 −1

−1 1 −1 1 1 1 1 1 −1 1 1 1 −1
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For n=28,

A B C D E F G H I J K L M N
1 −1 −1 −1 −1 −1 −1 1 1 −1 1 −1 −1 −1

−1 1 −1 −1 −1 −1 −1 1 −1 1 −1 −1 −1 1
−1 −1 1 −1 −1 −1 −1 −1 1 −1 −1 −1 1 1
−1 −1 −1 1 −1 −1 −1 1 −1 −1 −1 1 1 −1
−1 −1 −1 −1 1 −1 −1 −1 −1 −1 1 1 −1 1
−1 −1 −1 −1 −1 1 −1 −1 −1 1 1 −1 1 −1
−1 −1 −1 −1 −1 −1 1 −1 1 1 −1 1 −1 −1
−1 −1 1 −1 1 1 1 1 −1 −1 −1 −1 −1 −1
−1 1 −1 1 1 1 −1 −1 1 −1 −1 −1 −1 −1

1 −1 1 1 1 −1 −1 −1 −1 1 −1 −1 −1 −1
−1 1 1 1 −1 −1 1 −1 −1 −1 1 −1 −1 −1

1 1 1 −1 −1 1 −1 −1 −1 −1 −1 1 −1 −1
1 1 −1 −1 1 −1 1 −1 −1 −1 −1 −1 1 −1
1 −1 −1 1 −1 1 1 −1 −1 −1 −1 −1 −1 1

−1 1 1 1 1 1 1 −1 −1 1 −1 1 1 1
1 −1 1 1 1 1 1 −1 1 −1 1 1 1 −1
1 1 −1 1 1 1 1 1 −1 1 1 1 −1 −1
1 1 1 −1 1 1 1 −1 1 1 1 −1 −1 1
1 1 1 1 −1 1 1 1 1 1 −1 −1 1 −1
1 1 1 1 1 −1 1 1 1 −1 −1 1 −1 1
1 1 1 1 1 1 −1 1 −1 −1 1 −1 1 1
1 1 −1 1 −1 −1 −1 −1 1 1 1 1 1 1
1 −1 1 −1 −1 −1 1 1 −1 1 1 1 1 1

−1 1 −1 −1 −1 1 1 1 1 −1 1 1 1 1
1 −1 −1 −1 1 1 −1 1 1 1 −1 1 1 1

−1 −1 −1 1 1 −1 1 1 1 1 1 −1 1 1
−1 −1 1 1 −1 1 −1 1 1 1 1 1 −1 1
−1 1 1 −1 1 −1 −1 1 1 1 1 1 1 −1
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