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Inspired by Firth, Zhang [28] developed a bias-reduced estimator for case-control data.

Zhang's estimator is the maximizer of a penalizedpro�le likelihood, where the pro�le like-

lihood is obtained by maximizing over the in�nite-dimensional parameter semiparametric

case-control likelihood, and the penalty is like that in the equation (1.1), but with an es-

timate, Î (� ), of the Fisher information in the pro�le likelihood. Simulation studies suggest

that the Zhang's method and Firth logistic regression have similar statistical properties

when applied to case-control data [6]. The similarity of Firth and Zhang logistic regression

suggests that we can apply other penalized logistic regression methods to case-contol data.

Alternatives to Firth logistic regression were considered by Greenland and Mansournia.[7].

They recommend penalization by log-F prior distributions over other possible priors such

as normal, t- and Cauchy distributions. The family of log-F priors is indexed by a shrinkage

parameter m. Larger values ofm induce greater shrinkage. Graham et al.[6] found that the

log-F priors performed well in limited simulations of case-control data, but did not propose

a method for choosing





Finding the MLE of � k is complicated by the in�nite-dimensional nuisance parameter g.

Qin and Zhang [17] proved that a pro�le likelihood function obtained by pro�ling g out has

the same form as the logistic regression (2.1), with a di�erent intercept term� �
k .



Note that evaluating the integrals in L(� � ; m) analytically is challenging. A straight-forward

way to solve this problem is to apply numerical approximate integration methods such as

Gaussian approximation, Monte Carlo integration and quadrature methods. We considered

Laplace Approximation in particular, because it is widely used for approximating marginal

likelihoods and its simplicity in computation and minimal computation time are advantages

over quadrature and MC integration, respectively.

Figure 2.1: The shape of log-F distribution

2.2 Laplace Approximation

Our goal is to approximate the integrals in the marginal likelihood of equation (2.7). Each

integral can be viewed as the marginal distribution of the data in a Bayesian problem with

likelihood L(� �
k ; � k ) and prior p(� k jm). We �rst discuss theoretical results from the Bayesian

inference literature that justify Laplace approximations of marginal distributions when the

sample size is large. We then present an empirical investigation of the utility of Laplace

approximation in the kinds of small sample problems that we are interested in.

Laplace's method approximates an integral by approximating the integrand with an easy-

to-integrate function. In particular, the integrand is approximated by an unnormalized

5



Guassian density function whose mean coincides with the mode of the integrand. Suppose

our integrand is an un-normalized posterior densityP(� ) with l(� ) = log P(� ). If l (� )



approximation. To investigate the quality of Laplace Approximation in our context we

performed limited simulations to assess whether the shape of the unnormalized posterior

L (� �
k ; � k )p(� k jm) is close to a normal density function and to judge the quality of Laplace

Approximation to the marginal likelihood. The simulations were conducted as described in

Chapter 3, with the exception that here we used a small sample of 10 cases and 40 controls.

The results are as follows.

For a single covariate simulated underm = 4 a plot of L (� �
1; � 1)p(� 1jm) for m = 4 and

� � = � 3 is shown in Figure 2.2, with the approximating unnormalized Gaussian distribution

superposed. We can see that the posterior is unimodal (see Appendix A for a proof of uni-

modality) with a heavier tail than the approximating Gaussian. Overall the approximation

looks reasonable for this simulated covariate.

Figure 2.2: The original posterior density for � and corresponding unnormalized Normal
density

Next we investigate the quality of Laplace Approximation to the marginal likelihood. For

each dataset, the marginal likelihood L(�; m ) =
R

L(X j� )p(� jm)d� can be regarded as

E p(L (X )j�) , in which � indicates the parameter space of� . Such an expectation can be

estimated by Monte Carlo by sampling � 's from the prior distribution and calculating the

mean of the likelihood values from each� . The precision of such an estimate depends on

the Monte Carlo sample size. In the following results we used a Monte Carlo sample size of

1 million.

We compare the approximated marginal likelihood at m = 4 and � � = � 3 from Laplace

Approximation, L̂ LA , to the estimation from Monte Carlo, L̂ MC , for each of 100 simu-

lated single-covariate datasets simulated underm = 4 , and calculate the relative di�erence

(L̂ MC � L̂ LA )=L̂ MC . In our study, the absolute relative di�erence is less than 0.3 in around

75% of the datasets (see Figure 2.3).
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Figure 2.3: (L̂ MC � L̂ LA )=L̂ MC , dashed lines indicating� 0:3

Finally, for a single dataset we compared the MC and LA estimates of the marginal like-

lihood of � � = � 3 and a grid of m = (0 :5; 1; :::; 10). We plot the natural log of LA and

MC estimates versusm(see �gure 2.4). We see that the argmax of the LA-approximated

marginal likelihood is smaller than the argmax of the MC-approximated marginal likeli-

hood. Whether such underestimation is typical and leads to biased estimation of m is an

area for future work.

2.3 Derivative-free Optimization Strategies

We maximize the approximate marginal likelihood, denoted eL(� � ; m) to estimate (� � ; m).

Calculation of derivatives of eL(� � ; m) is challenging and so we opted for derivative-free

optimization methods. We consider the Nelder-Mead algorithm, a genetic algorithm, and

the particle swarm optimization method. The genetic algorithm and particle swarm are

examples of the larger class of evolutionary algorithms. We discuss each method brie�y in

the following subsections. Our simulations (Chapter 3) suggested that the genetic algorithm

and the particle swarm optimization method perform better in general. Throughout we let

f (x) denote the objective function to be maximized overx in some subset
 of Rp.

2.3.1 Nelder-Mead

The Nelder-Mead extended simplex method is most easily described for the casep = 2 .

Ster.



Figure 2.4: log(L̂ MC ) and log(L̂ LA ) for m = 0 :5; 1; :::; 10

expanded or contracted at di�erent iterations [13], to change the speed at which we move

through 
 . For p-dimensional 
 we replace triangles with simplexes. Though simple, the

Nelder-Mead method is not guaranteed to converge, and there are multiple examples of its

failure, even in two dimensions [26, 15]. The Nelder-Mead algorithm is implemented in the

R function optim() included in the base-Rstats package [18].

2.3.2 Genetic Algorithm

Genetic algorithms are stochastic search algorithms that equate values of the objective func-



reaches a speci�ed maximum generations. The approach was pioneered by Holland [10] and

later generalized; see Corez [4] for a review. A pseudo-code implementation of a genetic

algorithm is shown in Algorithm 1 [19] below. In our study we use thega() function from

the R packageGA [21].

Algorithm 1: Genetic Algorithm
Result: �nal population P

Input: evaluation function f , control parameters setC;

Initialization: random initial population P;

while termination condition not satis�ed do

evaluate current population and get the best individuals E from P;

select parents setParents from P;

if crossover condition satis�ed then

Children  crossover(Parents);

end

if mutation condition satis�ed then

Children  mutation( Parents);

end

P  E
S

Children
end

2.3.3 Particle Swarm Optimization

Particle swarm optimization (PSO) is a stochastic optimization technique proposed by Eber-

hart and Kennedy [12]. An initial set of vectors x1; : : : ; xN is viewed as �particles� that can

move about 
 . The velocity (direction and speed) of the movements are partly random and

partly in�uenced by values of the objective function seen previously by the particle itself and

others in its neighbourhood. Various modi�cations of PSO, and hybrids of PSO and other

modern evolutionary optimization algorithms are reviewed by Cortez [4] . Pseudo-code for

the SPSO 2007 algorithm of Clerc [3] is given in Algorithm 2 [4]. In our study we use the

10



psoptim() function from the R packagepso [2], which implements both the SPSO 2007 and

SPSO 2011 algorithms of [3].

Algorithm 2: Particle Swarm Optimization
Result: Best solution B

Input: evaluation function f , control parameters setC;

Initialization: initial swarm P, including random position and velocity for each

particle;

get the best particle B ;

while termination condition not satis�ed do

for each particle x = ( s; v; p; l) 2 P do

update the velocity v  velocity(s; v; p; l);

move the particle s  s + v;

check if x is on the boundary, if so, adjust;

if s is better �tted than p then
p  s

end

if s is better �tted than B then
B  s

end

end

update l for all particles following given topology in C;

end

2.4 Summary of Maximum Marginal Likelihood Estimator
of m

The approximate marginal likelihood is eL(� � ; m) =
Q K

k=1
eE[L j� � ; m], where ~E[L j� � ; m] is

the Laplace approximation to
R

L(� � ; � )p(� jm)d� . Each approximate integral eE[L j� � ; m]



Chapter 3

Simulation Study

Our simulation study addressed two questions:

1. Which of Nelder-Mead, the genetic algorithm (GA) or particle swarm optimization

(PSO) is the best optimization method for our problem?

2. How does the number of genetic markers a�ect the bias and variance of our estimator

of m?



of samples from the prior increases, which in our study is asK increases. We therefore

expect bias and variance of the estimator ofm to decrease with K . For each simulation

con�guration we generated 20 data sets.

3.2 Study 1: Optimization Methods Comparison

The methods of Nelder-Mead, GA and the PSO algorithm SPSO 2011 were run with their

default settings, and the same initial values of the parameters. An initial value ofm = 4

was selected when the truem was 2 or 8, and an initial m = 6 was chosen when the true

m was 4. The GA and PSO methods also allow the user to limit the range ofm values to

search; the search limits we chose are shown in Table 3.1.

True m Initial m Method Setting

2 4
Nelder-Mead NA
GA m 2 f 0; 10g
PSO m 2 f 0; 10g

4 6
Nelder-Mead NA
GA m 2 f 0; 10g
PSO m 2 f 0; 10g

8 4
Nelder-Mead NA
GA m 2 f 0; 15g
PSO m 2 f 0; 15g

Table 3.1: Study 1, simulation setting

The results are shown in Figure 3.1 and Table 3.2. As an indication of performance, the

shaded area in each panel is the range(0:5m; 1:5m). For m = 2 , there is no obvious di�er-

ence in performance between Nelder-Mead and PSO, while GA tends to overestimate. For

m = 4 , all three methods provide reasonable estimates ofm, though Nelder-Mead always

underestimates the true value. Under the largest valuem = 8 the estimates from Nelder-

Mead appear to be substantially downwardly biased, while the estimates from PSO are

highly variable. Overall, GA outperforms the other two methods in terms of accuracy.

Note that there are datasets for which all three methods give similar estimates that are

far below the true value. We speculate that for these datasets the simulated





Figure 3.1: Study 1, estimation of m for settings of true m = 2 ; 4; 8 separately
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Gene Chromesome Basepair Start Basepair End Number of SNPs
CR1 1 205737551 205881074 15
ECE1 1 21417188 21546592 37
MTHFR 1 11768839 11789631 10
BIN1 2 127534016 127575911 12



Chapter 5

Discussion

Our method of estimating the shrinkage parameterm is based on an approximated marginal

likelihood. We started from the penalised pro�le likelihood of the log-OR parameters� with

a log-F prior, which can be regarded as a modi�cation of Zhang's approach. By approx-

imating the marginal likelihood obtained by integrating out the



other genes we studied we were not able to obtain trustworthy estimates ofm and would

recommend a large value ofm=10, or a Gaussian prior. The genetic covariates in the ADNI-

1 study were 0, 1, 2 counts, which di�ered from the data generation in our simulations. An

area of future work is to conduct simulations with sparse count covariates.

A shortcoming of this project is that our method is not appropriate for low-dimensional

datasets. Information about the shrinkage parameterm comes from multiple realizations

from the prior distribution and we therefore need multiple covariates. By contrast, very high-

dimensional datasets pose computation problems and may lead to poor performance of the

optimization methods. For example, Helwig and Wanka [9] showed that the initialization and

bound handling mechanism of particle swarm optimization can cause particles to become

trapped at local maxima in high-dimensional search spaces.

The major limitation of this work is that it does not provide con�dence intervals for our

estimates of the shrinkage parameterm. One possible approach is to obtain con�dence

intervals by inverting a pro�le likelihood ratio test. The pro�le likelihood is obtained as

follows. For �xed m we consider the marginal log-likelihood to be a function of the� � 's. We

can use a derivative-free optimization method to maximize this function over the� � 's to

obtain an approximate pro�le likelihood value at m. Repeating this procedure for a grid of

m values gives an approximate pro�le log-likelihood form. A pro�le likelihood ratio test of

a speci�c value m0 would retain the null hypothesis when � 2 times the log-likelihood ratio

of m0 versusm̂ is less than about 4. This reasoning leads to the so-called �drop-down-two�

con�dence interval comprised of all m0 such that the estimated pro�le log-likelihood at m0

is within about 2 of the estimated pro�le log-likelihood at m̂. Investigation of the properties

of such an approach can be included in the future work.

Ultimately, the purpose of estimating m is to use it as the smoothing parameter in single-

SNP logistic regression analyses. It is therefore of interest to explore the statistical properties

of the log-OR estimator from the two-step process of �rst estimating m and then estimating

log-ORs under a log-F(m,m) penalty. In addition to considering the approximate maximum

likelihood estimator m̂, we might also use them value at, say, the upper or lower limits of

the con�dence interval for m. These explorations are also future work.
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Appendix A

Implementation of Laplace
Approximation

Recall the marginal likelihood for (� � ; m) and denote the product L (� �
k ; � k )p(� k jm) by L p,

which can be regarded as an unnormalized posterior density. Note thatL p is di�erentiable,
and denote the maxima ofL p with � �

k ; m given, as� max
k .

R
L pd� k can be approximated with

L pj � max
k

s
2�
cP

; cP = �
@2

@�k
log(L p)j � max

k
(A.1)

In Practice, the value of L p can be too small to compute in R, instead we computedlog(L p)
to access the value of� max

k by simply taking the derivatives. Plug-in (2.4) and (2.5) we have

log(L p) =
nX

i =1

(Yi (� �
k + X k

i � k ) � log(1 + exp(� �
k + X k

i � k )))

� log(Beta(m=2; m=2)) �
m
2

� k � m � log(1 + exp(� � k ))

(A.2)

@log(L p)
@�k

=
nX

i =1

(Yi X k
i �

exp(� �
k + X k

i � k )X k
i

1 + exp(� �
k + X k

i � k )
) �

m
2

+ m
exp(� � k )

1 + exp(� � k )
(A.3)

To show that L p is well-peaked enough for Laplace approximation, we prove the following
result to ensure its unimodality:

Result The root of @log(L p)=@�k = 0 , denoted by � max
k , is the global maxima of L p.

Proof Rewrite (A.3) with notations of e� = exp(� �
k ); ek = exp(� k ), we have

nX

i =1

(Yi X k
i �

e� e
X k

i
k X k

i

1 + e� e
X k

i
k

) �
m
2

+ m
1=ek

1 + 1=ek
=

nX

i =1

(Yi X



Consider when� k ! �1 ; ek ! 0, X k
i

1+ e� e
X k

i
k

! X k
i when X k

i > 0; ! 0 when X k
i < 0. Then

nX

i =1

(Yi X k
i � X k

i +
X k

i

1 + e� e
X k

i
k

) �
m
2

+
m

1 + ek

!
nX

i =1

(Yi X k
i � X k

i ) +
nX

i =1

X k
i I (X k

i > 0) +
m
2

=
nX

i =1

(Yi X k
i ) �

nX

i =1

X k
i I (X k

i < 0) +
m
2

=
nX

i =1

(X k
i I (Yi = 1) I (X k

i > 0) � X k
i (Yi = 0) I (X k

i < 0)) +
m
2

> 0

(A.5)

Similarly, when � k ! 1 ; ek ! 1 , X k
i

1+ e� e
X k

i
k

! 0 when X k
i > 0; ! X k

i when X k
i < 0. We

have
nX

i =1

(Yi X k
i � X k

i +
X k

i

1 + e� e
X k

i
k

) �
m
2

+
m

1 + ek

!
nX

i =1

(X k
i I (Yi = 1) I (X k

i < 0) � X k
i (Yi = 0) I (X k

i > 0)) �
m
2

< 0

(A.6)

Since (A.3) is continuous onR, a root of @log(L p)=@�k = 0 must exist according to inter-
mediate value theorem. Next we prove this root, denoted by� max

k is the only root. The
Hessian

@2

@�2k
log(L p) =

nX

i =1

(�
exp(� �

k + X k
i � k )(X = 0 must exist accord80 Td [(�98 w 0 0 m 9.578 0 l S
Q
BT1
]TJ/F29 7)()]TJ6o91 T0[(k)0.9091 Tf 9.681 7.38 Td [(exp)]TJ/F25 10.9Tf 350X

k
i �

X= 0 must exist according to inter-





(a) CR1 (b) ECE1

(c) MTHFR (d) BIN1

(e) NEDD9 (f) DAPK1

Figure B.1: LDheatmaps for genes included in real data analysis section, usingR2 measure
of LD(part 1)
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(a) IL33 (b) SORCS11

(c) GAB2 (d) PICALM

(e) SORL1 (f) ADAM10

Figure B.2: LDheatmaps for genes included in real data analysis section, usingR R



Appendix C

Code

1 library (pso)
2 library (GA)
3 n<-1000
4 mo<-2 #the prior density of beta is log-F
5 p<-19
6 simUnmatched =function (n,p,scale= FALSE){
7 # n is total sample size, beta1 is value of parameter of interest,
8 # p is number of nuisance covariates.wqs
9 ConCaseRatio = 4 # assuming 4:1 con:case ratio

10 ncase = n/(ConCaseRatio+1); ncon=ncase*ConCaseRatio
11 beta = log (rf(p+1,mo/2,mo/2)) # p nuisance params of value 1
12 ncov = p+1
13 # Simulate cases and controls
14 conX = caseX =NULL
15 for (i in 1:ncov) {
16 conX = cbind (conX,rnorm(ncon,mean=0,sd=1))
17 caseX = cbind (caseX,rnorm(ncase,mean= beta [i],sd=1))
18 }
19 X = rbind (caseX,conX)
20



50 alpha_star0<-alpha_star0m0[di]
51 X<-XM[,di]
52 temp1<-sum(X^2* exp(alpha_star0+beta_max[di]*X)/(1+ exp(alpha_star0+beta_max[di]*X)))
53 - sum(X^2*( exp(alpha_star0+beta_max[di]*X)/(1+ exp(alpha_star0+beta_max[di]*X)))^2)
54 temp2<-exp(-beta_max[di])/(1+ exp(-beta_max[di]))
55 -( exp(-beta_max[di])/(1+ exp(-beta_max[di])))^2
56 c=temp1+m0*temp2
57 LP_di<- sum(y*(alpha_star0+beta_max[di]* as.numeric (X))
58 - log (1+exp(alpha_star0+beta_max[di]* as.numeric (X))))
59 - log ( beta (m0/2,m0/2))-m0/2*beta_max[di]-m0* log (1+exp(-beta_max[di]))-0.5* log ( c)
60 ll<-ll+LP_di
61 }
62 ll
63 }
64 pso.result<-psoptim(par= c(alpha_star.V,m),fn=multi.dimen.logLP_betamax,
65 lower= c( rep (-20,p+1), 0), upper = c( rep (10,p+1),15),control= list (trace=100,fnscale=-1,
66 maxit=3000,maxit.stagnate=50,s=50,type="SPSO2011"))
67 if ( abs(pso.result$value-ftracer)>=0.001* abs(ftracer)){
68 alpha_star.V=pso.result$par[1:(p+1)]
69 m=pso.result$par[p+2]
70 tracer<- rbind (tracer, c( as.integer (i),alpha_star.V,m,pso.result$value))
71 ftracer<-pso.result$value
72 print (tracer[i+1,])
73 } else {
74 break
75 }
76 }
77 tracer
78 }
79 NMLA<-function (alpha_star.V,m,n.rounds){
80 tracer<- matrix (0,nrow=1,ncol=p+4)
81 ftracer<-0
82 i=1
83 for (i in 1:n_rounds){
84 beta_max<-numeric (p+1)
85 for (di in 1:(p+1)){
86 X<-XM[,di]
87 alpha_star<-alpha_star.V[di]
88 dlogPenalisedL<- function ( beta ){
89 sum(X*y-(X* exp(alpha_star+ beta *as.numeric (X))
90 /(1+ exp(alpha_star+ beta *as.numeric (X)))))
91 -m/2+m*exp(- beta )/(1+ exp(- beta ))
92 }
93 beta_max[di]<-uniroot(dlogPenalisedL, c(-20,20))$root
94 }
95 multi.dimen.logLP_betamax<- function (alpha_star0m0){
96 m0=alpha_star0m0[p+2]
97 ll<-0
98 for (di in 1:(p+1)){
99 alpha_star0<-alpha_star0m0[di]

100 X<-XM[,di]
101 temp1<-sum(X^2* exp(alpha_star0+beta_max[di]*X)/(1+ exp(alpha_star0+beta_max[di]*X)))
102 - sum(X^2*( exp(alpha_star0+beta_max[di]*X)/(1+ exp(alpha_star0+beta_max[di]*X)))^2)
103 temp2<-exp(-beta_max[di])/(1+ exp(-beta_max[di]))
104 -( exp(-beta_max[di])/(1+ exp(-beta_max[di])))^2
105 c=temp1+m0*temp2
106 LP_di<- sum(y*(alpha_star0+beta_max[di]* as.numeric (X))- log (1+exp(alpha_star0
107 +beta_max[di]* as.numeric (X))))
108 - log ( beta (m0/2,m0/2))-m0/2*beta_max[di]-m0* log (1+exp(-beta_max[di]))-0.5* log ( c)
109 ll<-ll+LP_di
110 }
111 ll
112 }
113 opt.result<-optim(par= c(alpha_star.V,m),fn=multi.dimen.logLP_betamax,
114 method="Nelder-Mead",control = list (fnscale=-1))
115 if ( abs(opt.result$value-ftracer)>=0.001* abs(ftracer)){
116 alpha_star.V=opt.result$par[1:(p+1)]
117 m=opt.result$par[p+2]
118 tracer<- rbind (tracer, c( as.integer (i),alpha_star.V,m,opt.result$value))
119 ftracer<-opt.result$value
120 print (tracer[i+1,])
121 } else {
122 break
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