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Chapter 1

Introduction

Since the completion of the Human Genome Project and the International HapMap

Project in 2003 and 2005 respectively, geneticists have established thousands of asso-

ciative relationships between genetic variants (usually Single-Nucleotide Variants, or

SNVs) and disease traits using Genome-wide Association Studies (GWAS) [3]. What

these association studies cannot do is establish a causal link between the variants and

the traits they are associated with. In order to establish causality, further study is re-

quired. Genetic �ne-mapping can be thought of as the step following a GWAS, where

regions identi�ed by a GWAS (after exceeding some Bonferroni-esque threshold) are

analyzed to ascertain whether or not a causal variant exists in that region.

As such, �ne-mapping can be understood as taking the GWAS data that shows

these complex associations and essentially, `untangling' it to �nd the causal genes.

The purpose of �nding these causal genes is to home-in on the precise gene mecha-

nisms that are involved in driving the causation and potentially alter the mechanisms

to change the trait. Fine-mapping requires three essential components: (1) all the

single-nucleotide variants in the region need to be genotyped or imputed with high



to emulate the requirements of a genetic �ne-mapping attempt using a simulation of

the genomic information for chromosome 1.

In the literature, �ne-mapping is formulated as a variable selection problem in

regression. A typical analysis of this sort is treated in [10]. What di�erentiates ge-

netic �ne-mapping from a standard variable selection problem is the fact that genetic

variants tend to be very highly correlated due to a phenomenon called linkage dise-

quilibrium. This is the non-random association of alleles at di�erent loci in a given

population. Loci are said to be in linkage disequilibrium when the frequency of asso-

ciation of their di�erent alleles is higher or lower than what would be expected if the

loci were independent and associated randomly [11]. There may be instances where

the correlation between variants is as high as 0.99 or even 1 [15].

The most rudimentary procedures in �ne-mapping assume only one causal variant

in each locus [3]. The assumption that there is only one causal variant in the selected

locus is not the most realistic given the direction of the most recent research. Linkage

disequilibrium hinders the identi�cation of causal variants at risk loci in �ne-mapping

studies as at each locus, there are often tens to hundreds of variants tightly linked [2].

The local LD structure can also induce higher association statistics for neighboring

variants rather than the causal variants [13]. As such, there exists a need to develop

methodologies that can be used to model multiple SNVs simultaneously. Using these

methodologies, it should be possible to obtain more robust measures of which SNV

is likely to be causal. The Sum of Single E�ects (Susie) regression method [15] is

one such methodology which aims to compute a posterior distribution on multiple

variants.

This study focused on using simulated SNV data for chromosome 1 on 3100 diploid

individuals to assess the Susie regression method's performance on a dense genomic

region. This was done to answer the question of whether or not variable selection

methods utilizing Variational Bayes techniques can be scaled up to detect variants in
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larger regions than those typically seen in a �ne-mapping study. Since chromosome 1

is the largest chromosome in the human genome, the results from this study can be

extended to other chromosomes as well.

The remainder of this thesis report is organized as follows: The Methods section

will walk the reader through the underlying mathematics of the Susie method and its

accompanying �tting procedure, the Iterative Bayesian Step-wise Selection (IBSS).

The Data section will dive deeper into the simulation used to generate the variant

data for Chromosome 1 as well as the pre-processing, quality control and study design

considerations before the Susie method was used. The work�ow and the results of

the analysis are discussed in the Application section while the limitations of this

project and recommendations for future research in this area are addressed in the

Discussion section. Also included in the Discussion section is a comparison of the

Susie method with a penalized-likelihood based approach that utilizes re-sampling to

quantify uncertainty in the variable selection procedure [14].
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Chapter 2

Methods

The Susie method is founded on the idea of a single-e�ects regression (SER) [9]. Es-

sentially, the SER model assumes there is exactly one non-zero regression coe�cient.

In the genomics setting, this would be akin to assuming only one causal variant. The

single-e�ects regression model is formulated as

y = Xb + �;

where y is the vector of phenotypes forn individuals, X is the genotype matrix

of dimension n � p, b is a vector of regression coe�cients with exactly one non-

zero entry and other entries of zero, and� � N (0; � 2I n ). Let b = b where b is a

scalar corresponding to the e�ect size of a single single-nucleotide variant (SNV) and

 = [  1; :::;  p] is a vector with elements indicating inclusion of a single SNV among

the p SNVs i.e. the vector can only take on values0 or 1.

Assume that the scalarb � N (0; � 2
0) and the vector � Multinomial( m; � p) where

m = 1 is the number of resamples and� p is the p-vector of resampling probabilities.

These can be thought of as the prior distributions for the Susie method. From this it

can be seen that the single SNV with non-zero e�ect is obtained from a resampling

procedure withm = 1 draw. Since the sampling distribution is multinomial with� as
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the resampling probability, prior knowledge of which SNV is more likely to be causal

can be incorporated through� .

Under the SER model, the posterior distribution of an SNV being included is

given by

 jX ; y; � 2; � 2
0 �





the new response variable and the process repeats itself until a stopping criterion is

reached.

The IBSS is a hill-climbing algorithm that optimizes a variational approxima-

tion to the posterior distribution for b1; :::bL . The idea is to �nd an approximation

q(b1; :::bL ) to the posterior ppost = p(b1; :::bL jX; y; � 2; � 2
0). This can be done by min-

imizing D



where b is a vector of latent variables,� denotes other additional parameters that

need to be estimated,p(�) represents the likelihood forb and � and g(�) the prior

distribution on the latent variable vector b. Obtain estimatesĝ and �̂ via maximum

likelihood where

`(g; � ; y) = log
Z

p(yjb; � )



as

F (q; g; �; y) = Eq

"
logp(yjb; g; � )

q(b)

#

= Eq[logp(yjb; g; � )] + Eq

"

log
g(b)
q(b)

#

Now consider an additive model:

y =
LX

l=1

� l + �

� � N (0; � 2I n )

� l � gl :

The Susie model is an example, where� l = Xb l for somel 2 f 1; :::Lg and eachgl

is the prior distribution for b l . De�ne a simple modelM l which is derived from the

original model M by setting � l0 = 0 for all l0 6= l. Therefore M l is the model that

includes only the l th additive term. With respect to the Susie model, this simpler

model corresponds to Single E�ects Regression (SER). The Susie method hinges on

the idea that the modelM can be �t if each of the simpler modelsM l can be �t. In

order to �t each of the simpler models, allow the class of distributions onXb 1; :::Xb L

to factorize overXb 1; :::Xb L . This leads to:

q(Xb 1; :::Xb L ) =
LY

l=1

ql (Xb l ):
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Combining the above result with the decomposition of the ELBO function from

earlier, the following expression for the ELBO function is obtained:

F (q; g; �; y) = Eq[logp(yjb; � )] + Eq

"

log
g(b)
q(b)

#

= �
n
2

log(2�� 2) �
1



Chapter 3

Data

Simulated sequencing data were used to assess the Susie method's performance. The

python library msprimewas used to simulate sequencing data for Chromosome 1 [4].

The SNV data were simulated using a backwards Wright-Fisher model, followed by a

coalescent model to approximate the ancestry further back in time [5]. The Wright-

Fisher reproductive model assumes that generations do not overlap and that each

copy of the gene found in the new generation is drawn independently at random from

all copies of the gene in the old generation. The population consisted of 3100 diploid

individuals corresponding to 6200 sequences. The mutation and recombination rates

were set to be1 � 10� 8 per base-pair per generation.

Chromosome 1 consists of 249 million base-pairs and human genes tend to consist

of a median of 26288 base-pairs. Consequently, the sequence data for chromosome 1

was divided into 9427(24900000=26288) non-overlapping regions. Of these9427re-

gions,2000were randomly selected to be genes. To better summarize distribution of

polymorphisms within this population, consider Figure 3.1 which shows the distribu-

tion of the derived (mutated) allele frequency of the population. The allele frequency

can be thought of as the amount of genetic variation within a locus expressed as a

percentage.

The sequence data was then randomly paired with 3100 individuals. The subse-

quent genotype matrix X had dimensions3100� 287668. Only possible entries for
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According to Park et al. [6], the squared scalar e�ect size (� 2) and the population

derived allele frequency are inversely related as:

� 2 =
b2

f (1 � f )
;

whereb2 is a random error term obtained from a Laplace distribution with location

parameter0 and shape parameter1. Further, the contribution of each causal SNV to

the total genetic variation in the phenotype is:

g = 2� 2f (1 � f )

= 2 �
b2

f (1 � f )
� f (1 � f )

= 2b2:

From [16], height was assumed to have a heritability of80%. That is, 80% of

the variation in height was due to genetic factors. We are assuming an omnigenetic

relationship between our SNVs and phenotype. Since Chromosome 1 contains about

7% of the genes in the human genome, the contribution of its genes to the variability

of height was calculated as0:07� 80%� 6%. That is, the heritability of height, Y ,

H =
Var(E[Y jX ])

Var(Y)
;

where the random variableX encodes the genetic information on chromosome 1, is

H = 0:06. Given H = 0:06and V ar(Y) = 10:52, the genetic variationV ar(E[Y j





In order to work with these data e�ciently in R, the information in these four

�les was combined into aBGDataobject from the BGDatapackage [1]. Before the data

could be analyzed using the Susie method, pre-processing and data quality control

steps were performed. These are described below. The quality control, pre-processing

and the assessment of the Susie method were all performed in R [7]. All the scripts

for this analysis are freely available athttps://github.com/SFUStatgen/ZJ/tree/

main/Thesis/DataScripts .

The results of a chromosome-wide scan of association before performing the Qual-

ity control steps are provided in Figure 3.3. The striations above 15 on the y-axis

involves a number of SNVs that are in perfect LD. Notice that non-gene regions of the

Chromosome are signi�cantly denser than the gene regions. The causal genes in the

Chromosome account for an even smaller proportion than the gene regions. Despite

this, 4 causal SNVs that account for most of the genetic variation in the phenotype

are detected after adjusting for multiple testing (blue horizontal line). However, these

are detected along with a host of other non-causal SNVs. In a real-world study the

causal SNVs would be indistinguishable from the non-causal. Figure 3.4 highlights the

glaring di�erence in proportions of SNVs between the causal gene, non-causal gene

and non-gene regions in Chromosome 1.

https://github.com/SFUStatgen/ZJ/tree/main/Thesis/DataScripts
https://github.com/SFUStatgen/ZJ/tree/main/Thesis/DataScripts


Figure 3.3: Manhattan plot of an initial Chromosome-wide scan of association

colnames(snvs)[1] <- "snp"

gene_summaries <- cbind(snvs, gene_summaries)

#Merge Allele frequency information with the results of univariate regressions for later

gwasdata1 <- merge(res1, gene_summaries, by = "snp")

#Obtain minor allele frequencies

gwasdata1 <- gwasdata1 %>%

mutate(maf = ifelse(allele_freq > 0.5,

1 - allele_freq, allele_freq))

#Filter the SNPs in the non-exome regions for MAF > 0.01

exome <- gwasdata1 %>%

filter(region == "Causal Gene" | region == "non-Causal Gene")

nongene <- gwasdata1 %>% filter(region == "Non-Gene")

filtered.nongene <- nongene %>% filter(maf > 0.01)

filtered.SNVs <- rbind(exome,filtered.nongene)

filtered.SNVs %>% arrange(snp)

filsnps <- filtered.SNVs %>% select(snp)

#Making the necessary adjustments in the BGData object
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Table 3.1: Information on Causal SNVs
SNV gene.ID position (bp) MAF �̂ gva prop.gvb

rs16050 103 13812836 0.4885 -0.63 0.199 0.030
rs20159 134 17300226 0.0134 0.70 0.013 0.002
rs38980 253 33573167 0.3663 0.02 0.000 0.000
rs66413 458 57093607 0.0013 7.10 0.130 0.020
rs68020 474 58512510 0.3029 1.05 0.469 0.071
rs70530 491 60751870 0.2479 -0.01 0.000 0.000

rs105578 740 90888746 0.0021 3.68 0.057 0.009
rs105591 740 90900340 0.0002 42.51 0.583 0.088
rs131489 932 113319820 0.0619 0.56 0.036 0.005
rs155566 1110 134739717 0.0010 14.22 0.391 0.059
rs159243 1132 137934895 0.2800 -0.23 0.022 0.003
rs160147 1141 138722190 0.0032 0.54 0.002 0.000
rs161037 1147 139542705 0.0002 -20.57 0.137 0.021
rs161055 1147 139557027 0.1937 -0.39 0.048 0.007
rs162134 1156 140483427 0.3469 0.49 0.110 0.017
rs193998 1366 167670283 0.0002 -0.67 0.000 0.000
rs194004 1366 167676775 0.2245 0.68 0.161 0.024
rs220574 1538 191142554 0.0115 -1.32 0.040 0.006
rs225699 1577 195651125 0.0437 2.22 0.410 0.062
rs229373 1606 198898287 0.0006 -45.62 2.684 0.405
rs285543 1983 247120904 0.0060 -9.26 1.017 0.153
rs286124 1985 247641972 0.0865 0.89 0.125 0.019
a gv= genetic variance contribution.
b prop.gv= proportion of contribution to total genetic variance.

filtered.Geno <- DATA@geno[,unlist(filsnps)]

DATA2 <- DATA

DATA2@geno <- filtered.Geno

#The code used to adjust the map file was not included

From Figure 3.4, it can also be seen that most of the SNVs in non-gene regions

tend to have very low values for MAF (see table 3.1). At the same time 12 of the 22

causal SNVs also have very low MAF values. To avoid losing information from the

gene regions, only SNVs in non-gene regions were �ltered based on MAF values.

The �ltering resulted in a reduced genotype matrix with dimensions3100� 170551,



After the �ltering process, a second chromosome-wide scan of association was per-

formed and the results of this test are shown in Figure 4.1. Notice that now there

are far fewer SNVs that have p-values above the Bonferroni-adjusted threshold. In

addition to the analysis of the fully processed and quality-control adjusted genotype

matrix, the Susie regression method was performed on this partially quality-controlled

dataset. The results of this analysis are presented in the Results section for compari-

son.

Figure 3.4: Proportions of SNVs on the chromosome that are causal, non-causal and
non-gene along with their minor allele frequencies grouped into 3 categories

The second quality control step involved further reducing the number SNVs to

be consistent with a study that uses exome-sequencing in combination with array

genotyping of common SNVs or single-nucleotide polmorphisms (SNPs). In exome-

sequencing only the protein-coding regions (exomes) are sequenced. The process of

spacing non-gene SNPs in the chromosome can be intuitively thought of as a form

of systematic sampling of exomes SNPs spaced roughly 105 kilobases apart. This
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corresponds to the average spacing on a SNP-array chip. The code to wrangle the



spacings<-diff(unlist(array_support[,"SNV.posn"]) )

#For the exome-sequencing step,

# First, pare down SNV_support into newSNV_support

arraySNV.IDs<-SNPs[arraySNPs, "SNV.ID"]

include<-((unlist(SNV_support[, "SNV.ID"]) %in%

unlist(arraySNV.IDs)) |

!is.na(SNV_support[,"gene.ID"]))

newSNV_support<-SNV_support[which(include),]

# Second, pare down genos into newgenos

cols <- which(include)+1

newgenos<-subset(genos,,cols)

Using thenewgenosmatrix and the corresponding SNP.support dataframe, a new

BGDataobject was created. The code for that is available in the Github repository

for this project.

After these steps were completed, the resulting genotype matrix had dimensions

3100� 62534. The Susie regression method was used on this matrix to identify SNVs

associated with the phenotype. The results of this analysis are available in the next

section.
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Chapter 4

Application

Figure 4.1 shows the results of a second Chromosome-wide scan of univariate as-

sociation on the reduced data obtain after the pre-processing, quality-control and

exome-sequencing design steps described in the previous section. Now, the plot of

the negative log-10 p-values allows for a better understanding of which loci could

potentially be causal.

Figure 4.1: Manhattan plot of Chromosome 1 after Pre-processing and quality control
steps

21



However, the results of the chromosome-wide scan only establish which SNVs

are associated with the phenotype and the strength of the univariate association via



7. Continue this process until no credible sets are reported.

8. If no credible sets are reported, lower the requested coverage probability and

try again.

All scripts for the analysis in this section can be found athttps://github.com/

SFUStatgen/ZJ/tree/main/Thesis in the folder AnalysisScripts

Initially, we �t a Susie regression with the default settings. The resulting PIPs

are plotted in Figure 4.2. This �rst run yielded two credible sets. The information for

each of the SNVs in these credible sets is summarized in Table 4.1, along with the rest

of the SNVs detected by the Susie method from the start to the �nish of the project.

The �rst credible set (CS1) contained one causal SNV, rs229373 and one non-causal

SNV, rs245524. This is due to extremely high LD between these two SNVs. The

correlation between rs229373 and rs245524 was calculated to be 1 using Pearson'sr .

Both of these SNVs have a PIP of 0.5001592. The second credible set (CS2) contained

only the causal SNV rs285543. The posterior coverage probabilities for CS1 and CS2

were 1 and 0.99, respectively. The coverage probability was requested to be at least

0.95. Notice that while CS1 had a higher coverage probability than CS2, this higher

coverage probability was due to both SNVs in the set contributing equally to the

coverage. This indicates some degree of ambiguity in the selection process. However,

even though CS2 had a slightly lower coverage probability, only one SNV, rs285543,

contributed to all of it. Since the identity of the e�ect SNV was unambiguous, CS2

and speci�cally rs285543 was chosen for further analysis.

For the next step, we �t a univariate regression with height as the dependent

variable and the dosage of rs285543 as the independent variable. The residuals from

this univariate regression were then used as a new phenotype for a Susie regression.

Before �tting this regression involving the residuals, all the SNVs in the gene with ID

1983 (containing rs285543) were removed.
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Figure 4.2: Plot of posterior inclusion probabilities after the �rst run of the Susie
method

From the second run of the Susie method, only one credible set was obtained. As

expected this contained rs229373 and rs245524, the SNVs reported in the �rst run.

Again, both SNVs had PIPs of approximately 0.5, indicating that the ambiguity in the

selection process was not improved by the adjustment. This time, a univariate regres-

sion was performed with the residuals of rs285543 as the dependent variable and the

dosage of rs245524. Note that rs245524 is a non-causal SNV in linkage disequilibrium

(LD) with the actual causal SNV rs229373. However, in order to simulate a real-world

investigation, the non-causal SNV was chosen at random from the two SNVs in the

credible set. When adjusting for this SNV in the genotype matrix, all SNVs from

both genes (IDs 1606 and 1725) represented by the credible set were removed from

the genotype dosage matrix to adjust for the LD.

For the third run of the Susie method, the dependent variable was the residual

vector of rs245524. After the third run of the Susie method, no credible sets were

reported at the 95% coverage level. Coverage was then reduced to 85% but to no
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avail. The reason for this is evident in the plot of the posterior inclusion probabilities

after the third run, as shown in Figure 4.3. Since the top SNVs in this third run have a

combined coverage that is less than 95%, a much lower requested coverage probability

would yield credible sets in this setting. Subsequently, coverage was reduced to 50%.

This action yielded one credible set with coverage probability of approximately 70%.

The new credible set contained two SNVs, rs105591 which was causal and rs104853

which was not. As was the case in the previous run, both of these SNVs had PIPs

equal to 0.3510689, indicating the ambiguity in identifying which was an e�ect SNV.

Figure 4.3: Plot of PIPs after the third run of the Susie method highlighting the
reduction in the highest scoring SNV.

For the fourth run of the Susie method, the residuals of rs245524 were now the

dependent variable in a univariate regression with rs105591 as the independent vari-

able. The residuals of this regression would then be re-fed into the Susie function with

the genotype dosage matrix adjusted appropriately. For this run, requested coverage

was further reduced to 10% since no credible sets were reported at the 50% coverage

level. Only one credible set was reported after the change in requested coverage and

this contained causal SNV rs68020. The SNV had a PIP of 0.4.
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On subsequent runs, using the residuals from regressing the residuals of rs105591

with the dosage of rs68020 as the phenotype, the Susie method failed to report any new

credible sets. This was the case even after reducing the requested coverage probability

to a ridiculously low 0.05. Upon further inspection, after adjusting for rs68020 all PIPs

had been reduced to 0. This indicated that the method could not �nd the remaining

18 causal SNVs after adjusting for the �rst 4. Therefore, as summarized in Table 4.1,

the causal SNVs identi�ed by Susie in this study were: rs229373, rs285543, rs105591

and rs68020. At �rst it may seem that Susie was only 20% successful. However, note

that the four identi�ed SNVs were also four of the top �ve SNPs in terms of proportion

of genetic variation.

After no more credible sets could be obtained, two di�erent strategies were imple-

mented to recover the remaining causal SNVs. These are highlighted below.

The �rst strategy entailed using a multivariable regression model to simultaneously

adjust for the discovered SNPs, instead of the earlier strategy of making adjustments

sequentially. The residuals from a multivariable regression on height using rs285543,

rs245524, rs105591, rs68020 were fed to the Susie method as the dependent variable.

However, this method also failed to produce a credible set at the 10% level.

The second strategy entailed removing the genes that were associated with the

previously discovered SNVs (both causal and non-causal) and then applying Susie

regression to the height phenotype instead of the residuals. This procedure yielded a

credible set at the 10% level. This credible set contained the SNV rs128017, which

was non-causal. However, this was still treated as a discovery and the residuals from

this SNV were re-fed into the Susie function. Upon re-�tting Susie with these new

residuals, no new credible sets were reported at the 5% level. The interpretations,

implications, limitations and recommendations in light of these �ndings are discussed

in the Discussion section.
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Table 4.1: Information on SNVs detected by Susie
SNV causal gene.ID base-pair prop.gv CSa RCb Susie run PIPc;d

rs229373 Yes 1606 198898287 0.405 L1 95% �rst, second 0.50
rs245524 No 1725 212777762 0 L1 95% �rst, second 0.50
rs285543 Yes 1983 247120904 0.153 L2 95% �rst 0.99
rs104853 No 738 90313575 0 L1 50% third 0.35
rs105591 Yes 740 90900339 0.088 L1 50% third 0.35
rs68020 Yes 474 58512510 0.071 L1 10% fourth 0.44
a CS= Credible Set.
b RC= Requested coverage probability.
c PIP= Posterior Inclusion Probability.
d �rst and second runs had same PIPs for rs229373 and rs245524
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Chapter 5

Discussion

A Bayesian variable-selection method, Susie regression (Wang et al. 2020), was applied

to chromosome-wide data on SNV genotypes. The goal was to assess the method's

performance in �nding causal variants in a dense genomic region. After quality con-

trol and pre-processing steps, the region consisted of 62,534 SNVs for 3100 diploid

individuals. The phenotype of interest mimicked human height. Sex and ethnicity

were not incorporated in the data simulation procedure. The Susie method was able

to correctly identify four of the twenty-two causal variants in the data. These four

SNVs contributed disproportionately to the total genetic variation in the phenotype.

The genotype distributions for the top SNVs are provided in Table 5.1.

After accounting for the �rst four causal SNVs, the Susie method failed to report

more credible sets. The Posterior Inclusion Probabilities (PIPs) of the remaining SNVs

were reduced to 0. The locations of the detected SNVs are highlighted in Figure 5.1.

Two di�erent strategies were then implemented to coax out more SNVs, to no avail.

Table 5.1: Gene dosage breakdown of the top �ve causal SNVs
SNP 0 1 2 gv
rs229373 3096 4 0 40.00%
rs285543 3063 37 0 15.00%
rs105591 3099 1 0 8.80%
rs68020 292 1294 1514 7.10%
rs225699 2836 257 7 6.20%
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p-values) were simply in high LD with actual causal SNVs. This problem highlights

the need for �ne-mapping procedures that can be used on larger and denser genomic

regions while yielding accurate results.

The results from this investigation indicate that it is possible extend �ne-mapping

procedures to (at least) a chromosome-wide region. These results also indicate that

variable selection methods based on variational approximations can be highly suc-

cessful in identifying causal variants when these variants make a large contribution

to the total genetic variation. For comparison purposes, a penalized-likelihood based

�ne-mapping procedure was also used on this data.

The method, LASSO local automatic regularization resample model averaging

(LLARRMA) developed by Valdar et al. [14] combines LASSO shrinkage with re-

sample model-averaging in order to estimate, for each SNP, the probability of being

included in a multivariable model in alternate realizations (subsamples) of the data.

The sparse matrix of LLARRMA Re-sampled Model Inclusion probabilities (RMIP)

contained 164 SNPs. Out of the twenty-two causal SNVs, only rs68020 was included.

The RMIP values of the top 22 SNVs are shown in Fig 5.2.

It seems that the LLARRMA has been able to correctly identify rs68020 because it

had a su�cient contribution to genetic variation while also being relatively common

in the population. This is in contrast to the SNVs obtained by Susie. These were

reported in credible sets which usually contained one or two SNVs at a time. In the

�rst 4 iterations of the procedure described in the Analysis section, all of the reported

credible sets contained causal SNVs. The LLARRMA-identi�ed SNV rs68020 was

among the reported causal SNVs identi�ed by the Susie method.

While this project demonstrated that it is possible to extend Bayesian �ne-mapping

procedures to larger and denser genomic regions and still obtain fairly accurate re-

sults, the study had certain limitations which must be taken into consideration.
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Figure 5.2: RMIP values for SNVs from the LLARRMA method; only rs68020 was
correctly identi�ed

The data used to assess the Susie methods performance was obtained using a sim-

ulation method. Therefore, weaknesses in the assumptions underlying the simulation

model can make the results of this study less useful. For instance, the simulation

model (and the Susie method) are both based on an additive e�ect model. If domi-

nance e�ects or other locus-e�ect architectures (usually some combination of additive

and dominance e�ects) are present, this may make the detection of the causal variants

more challenging or may require a shift in the methodology.

The Susie method was used on a phenotype that was Normally distributed. Future

endeavors could also focus on how the Susie method performs in genetic case-control

studies that have binary variables as the phenotype.

At the same time, initial results from performing Susie on a chromosomal dataset

that was partially pre-processed seemed to yield promising results. This indicates

that pre-processing may not be necessary. On the methodology side, there is scope

to re�ne the search for causal variants using more information on the gene regions.

The Susie method has the capacity to incorporate di�erent priors and it could be
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possible to simulate data where causal gene e�ects are emulated using known gene

functions (knowledge of genes coding for certain proteins). This information could

then be passed on to the Susie method as a functionally informed prior and the

results compared to a baseline model with �at priors.
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Appendix A

Code

The code used to summarize, explore and analyse the data in this thesis is available
from https://github.com/SFUStatgen/ZJ.
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