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Abstract

Variable selection is the statistical problem of identifying predictors that explain the vari-

ation in a response, which is challenging when the number of candidate predictors is large.

Several existing frequentist and Bayesian methods can perform variable selection in high-

dimensional settings with reasonable computation times. Modern Bayesian methods focus

on sampling models from the posterior distribution on the model space while neglecting

the estimation of model coefficients. Annealed sequential Monte Carlo (SMC) sampling is

an appealing method that provides a weighted sample of models and model parameters

simultaneously, thus simultaneously performing selection and estimation without further

computational effort. We examine the selection and estimation performance of annealed

SMC sampling for linear regression and mixed-effects models under different conditions to

determine factors that impact its efficacy. We demonstrate that sample size, signal-to-noise
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Chapter 1

Introduction

Variable selection is the statistical problem of identifying an active subset of predictors of

a set of candidate predictors that explain the variation of a response variable. Variable se-

lection methods have been developed and studied for decades and continue to be an active

Ąeld of research, especially in modern, high-dimensional contexts. Stepwise selection is a

conceptually straightforward method that is often used in scientiĄc contexts, but it can be

highly unstable with respect to the dataset and requires data splitting to provide coeffi-

cient estimates with known theoretical distributions, effectively reducing the sample size.

Simultaneous variable selection and coefficient estimation can be done using LASSO, and

much work has been dedicated to developing conĄdence intervals for model coefficients [10].

Inference about model coefficients using this method is conditional on the selection of the

corresponding predictors. We are interested in Bayesian analogues of these methods that al-

low us to simultaneously identify important predictors that explain a response variable and

provide interval estimates with good marginal coverage properties for model coefficients,

i.e., that do not require data splitting.

Bayesian model averaging (BMA) is an approach for incorporating uncertainty in sta-

tistical modelling that introduces a prior distribution on the space of possible models and

derives the posterior distribution on this space using BayesŠ rule. BMA is an intuitive

method for averaging posterior distributions of quantities of interest over a range of plausi-

ble models, which is useful in situations where there is considerable model uncertainty. In

addition, BMA usually leads to improved predictive performance over Ątted models that

have not been subjected to variable selection [9]. More formally, let M denote the (possibly

countably inĄnite) set of possible models ¶Mk♢, where k is an arbitrary index and a prior

distribution π(Mk) is given over M. For each model Mk, there are parameters θk and the

likelihood f(D ♣Mk, θk) of the data D under Mk. If ∆ is a quantity of interest, then we can

average its posterior distribution across models in M as follows [9]:

π(∆ ♣D) =
∑

Mk∈M

π(∆ ♣Mk, D)π(Mk ♣D),

1



where

π(Mk ♣D) =
π(D ♣Mk)π(Mk)

∑

Mj∈M π(D ♣Mj)π(Mj)

and

π(D ♣Mk) =

∫

π(D ♣ θk,Mk)π(θk ♣Mk) dθk.

In the context of variable selection, the space of possible models typically consists of a fam-

ily of models deĄned by considering all possible subsets of candidate predictors that may

explain the response variable. SpeciĄc predictors can be selected by imposing criteria on the

posterior model probabilities π(Mk ♣D), such as the predictors in the model with maximum

a posteriori probability or predictors whose posterior inclusion probabilities, which are de-

Ąned as the sum of posterior probabilities of models containing the predictor, are above

some threshold. Model coefficients are interpreted as per their usual meaning for models

that include the associated predictors and as degenerate point masses at 0 for models that

exclude them. Their posterior distributions account for the possibility of including other



of interest primarily focus on predictors with Ąxed effects.

We justify our choice to use annealed SMC sampling for our project as follows. Initially,

we explored the use of reversible jump Markov chain Monte Carlo to obtain draws of the

parameters and the model jointly from the posterior distribution, using a formulation that

makes the algorithm equivalent to a Gibbs sampler [2]. However, in our preliminary investi-



is a preferable alternative to MCMC when the latter produces chains with poor conver-

gence. SMC sampling can be adapted to sampling a single target distribution π, leading to

annealed SMC. Annealed SMC is simple to implement and does not rely on convergence

arguments in the same sense as do MCMC methods, which tends to reduce computation

time while still maintaining accuracy of the posterior distribution. By sampling both mod-

els and parameters, the need to compute the evidence for all possible models is avoided,

thereby enabling the use of annealed SMC for more complicated models and more candidate

predictors. However, its theoretical justiĄcation still depends on a convergence argument as



Chapter 2

Motivating example



Chapter 3

Methods

In this chapter, we describe the annealed SMC sampling algorithm applied to a family

of linear mixed models indexed by candidate predictors that are not identically zero. We

describe the models Ąrst and then the algorithm.

3.1 Linear Mixed Model

We restrict attention to the random-intercept model for simplicity. Let Yij and (xij1, ..., xijp)

denote the response and vector of predictor variables, respectively, observed on the ith

individual at time point j, i = 1, . . . , n, j = 1, . . . , ni. We proceed with a joint model-

parameter space in the sense of Barker & Link (2013) [2]. Let β = (β0, ..., βp) be a column

vector of regression coefficients. We identify a model by ζ = (ζ1, ..., ζp), where ζj ∈ ¶0, 1♢
for j = 1, ..., p as follows. Let m1, ...,m♣ζ♣ be the indices for which ζj is 1 (listed in increasing

order), where ♣ζ♣ indicates the L1-norm of ζ, and let ψ = (ψ0, ..., ψp) be an auxiliary

parameter that is common across all models. We introduce ψ because in the annealed SMC

sampling algorithm, we draw ψ as well as the model and other parameters. Consequently,

we sample from a model-parameter space with constant dimension, which facilitates the

construction of simple MCMC moves to be used in the algorithm. We then deĄne

xij = (1, xij1, ..., xijp),

Xi =











xi1

...

xini











,

βζ =















β0

βm1

...

βm|ζ|















,
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ψζ =















ψ0

ψm1

...

ψm|ζ|















predictors addresses scaling concerns, and the choice of τ is at the discretion of the analyst

[8]. We comment on this issue further in section 5.

The interpretation of the model coefficients, the βj Šs, when averaged across models is an

important consideration when their estimates are of interest. In a single model that contains

a continuous predictor xj , βj is the change in the mean response when xj increases by one

unit and other predictors are held constant. Given a prior distribution on the parameters

of this model, the posterior distribution of βj represents the effect of xj after having ad-

justed for other predictors in the model. When the posterior distributions of βj are averaged

across models containing βj , the mode of the averaged distribution may be understood as

the change in mean response when xj increases by one unit adjusted by the remaining can-

didate predictors, which possibly have coefficients of zero. For models not containing xj , βj

is set to be zero, meaning xj has no effect on the mean response. Hence when the posterior

distribution of βj



suggesting otherwise, π1, ..., πT −1 are not true posterior distributions of (Θ, ζ) conditioned

on y. But they are proper densities that depend on y.

The main idea is to use the intermediate distributions πt to facilitate the sampling of

πT starting with draws from π0 in the following way. Let ωt





For this project, Kt is constructed to be a symmetric random walk Metropolis kernel

that is πt



Chapter 4

Simulation studies

The aim of our simulation studies is to examine the behaviour of the posterior distribution

of the model parameters obtained using the annealed SMC method under different data

generating mechanisms. In particular, we investigate the marginal posterior inclusion prob-

abilities of candidate predictors, the coverage probabilities of 95% credible intervals for the

regression coefficients, and the bias of the posterior means of the model coefficients using

the Monte Carlo approximation π̂T from the last iteration of the annealed SMC algorithm.

We describe the data generating mechanisms and the results of each simulation study in

the following subsections. We Ąrst perform a simulation study in a simple setting to conĄrm

that the method can perform well. We then conduct a full factorial experiment in a more

realistic linear regression setting to explore factors that inĆuence the performance of the

method. Finally, we test the method using a mixed-effects model with a random intercept.

In all simulation studies, the marginal posterior inclusion probabilities of each candidate

predictor and the 95% credible intervals for the model coefficients are calculated using the

Monte Carlo approximation π̂T i.e. the last distribution targeted by the annealed SMC

sampling algorithm. For this project, a predictor is selected if its marginal posterior inclusion



4.1 Fixed-effects benchmark case

We Ąrst generate data according to a Gaussian linear model (i.e., no random effects) for

n = 1000 subjects and p = 3 candidate Ąxed-effect predictors. Although variable selection



Table 4.1: Estimated marginal selection probabilities of candidate predictors in Ąxed-effects
benchmark case.

Candidate predictor Estimated marginal

selection probability

Standard error

x1 0.962 0.009

x2 0.938 0.011

x3 0.072 0.012

Table 4.2: Estimated false and negative selection rates for the Ąxed-effects benchmark case.

Selection error metric Estimated mean Estimated standard deviation

False selection rate 0.036 0.129

Negative selection rate 0.050 0.150

Table 4.3: Estimated coverage probabilities of 95% credible intervals of model coefficients
for Ąxed-effects benchmark case.

Model coefficient Estimated coverage probability Standard error

β1 0.970 0.008

β2 0.944 0.010

β3 1.000 0.000

equal to the nominal level of 95% except in the case of β3. These statistics suggest that our

implementation of annealed SMC is correct and is effective at selecting important predictors



where 06 is the zero vector in R
6 and

Σ = σ2
X















1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1















∈ R
6×6.

Let

Yi = β0 + xi
Tβ + εi,

where βT =
(

β1 · · · β6



, εi ∼ N(0



datasets. The parameters σ2
X and β are chosen to be similar to those in section 4.1.

For each run (combination of factor levels), 200 datasets (replicates) are generated, and





Figure 4.1: Interaction plot showing the effects of SNR and SS on the coverage probability
of the 95% credible interval for β1.

suggest that SNR and Cor have the most impact on the bias of the posterior means of the

coefficients. Prop may have some effect, but the size of the impact of this factor differs for

β1 and β2, so evidence for its impact is less conclusive. Figure 4.2 shows the effects of SNR

and Cor on the bias of the posterior mean of β1. The plot for β4 is similar. The plots for β2

and β3 are also similar but are reĆected about the line y = 0, which may be explained by

the fact that the true values of β1 and β4 are set to be negative, while those of β2 and β3

are set to be positive. The plots then indicate that the posterior means are biased towards

zero, which is expected because the prior mean of β



Figure 4.2: Interaction plot showing the effects of SNR and Cor on the bias of the posterior
mean of β1 as an estimator for β1.

where

logit(p
(3)
i ) = η

(3)
i

and the Y
(3)

i Šs are independent. We use analysis of deviance tables as before. We stratify

analyses of x3 and x4 by Prop because the importance of x3 and x4 differs by Prop. The

analysis over all datasets for these predictors would Ąnd that Prop has an outsized impact

on the selection probabilities of x3 and x4, which is expected because x3 and x4 should have

high selection probabilities when Prop is high and low selection probabilities when Prop is

low. This effect could swamp the effects of other factors on the selection probability of these

predictors.

We Ąrst describe the results for x1 and x2, which are important in all datasets. SNR and

Cor have the most impact on the selection probabilities of x1 and x2. Figure 4.3 shows the

effects of SNR and Cor on the selection probability of x1. The corresponding plot for x2

is similar. Higher SNR is associated with higher selection probability for these predictors,

especially when Cor is low. Higher Cor is associated with lower selection probability for

these predictors, particularly when SNR is high.

Next, we describe the results for x3 and x4, which are unimportant when Prop is low and

important when Prop is high. The results suggest that SNR and Cor have the most impact

on the selection probabilities of x3 and x4 both when Prop is low and when Prop is high.

Figure 4.4 depicts the interaction plot showing the effects of these factors on the selection

19



probability of x3 when Prop is low; the corresponding plot for x4 is similar. When Prop

is low, higher SNR is associated with lower selection probability of these predictors, with

the difference more pronounced when Cor is high. The interaction plots showing the effects

of SNR and Cor on the selection probabilities of x3 and x4 when Prop is high are similar

to the corresponding plot for x1. SpeciĄcally, when Prop is high, higher SNR is associated

with higher selection probabilities for x3 and x4 with the difference being more pronounced

when Cor is low, and higher Cor is associated with lower selection probabilities for these

predictors, more so when SNR is high.

Finally, we describe the results for x5 and x6, which are unimportant in all datasets. The

analysis suggests that SNR and Prop have the most impact on the selection probabilities of

x5 and x6. Figure 4.5 shows the effects of SNR and Prop on the selection probability of x5;

the corresponding plot for x6 is similar. We note that due to the fact that the coefficients

are of the same size for both levels of Prop and to the deĄnition of SNR, the true value

of σ2 is larger when Prop is higher (for a Ąxed level of SNR). Therefore, the effect of Prop

is confounded with the effect of a larger value of σ2. Generally, higher SNR is associated



Figure 4.4: Interaction plot showing the effects of SNR and Cor on the selection probability
of x3 when Prop is low.

Figure 4.5: Interaction plot showing the effects of SNR and Prop on the selection probability
of x5.

We model the number of selected predictors that are not important, Fi, conditional on

the total number of selected predictors, Si, using a quasi-binomial regression approach with

E[Fi ♣Si] = Sip
(4)
i

21



and

Var(Fi ♣Si) = ϕSip
(4)
i (1 − p

(4)
i ),

where

logit(p
(4)
i ) = η

(4)
i

and the FiŠs are independent. In this model, p
(4)
i represents the false selection rate of the

annealed SMC algorithm when applied to the ith dataset. A quasi-binomial regression model

is used because a binomial GLM is inappropriate: the outcomes associated with different

predictors (important/unimportant) conditional on selection are not independent and do

not have a common binary distribution. Note that the false selection rate will tend to be



Figure 4.7: Interaction plot showing the effects of SNR and Cor on the logit false selection
rate when Prop is high.

and

V ar(Mi) = ϕ′tip
(5)
i (1 − p

(5)
i ),

where

logit(p
(5)
i ) = η

(5)
i

and the M ′
is are independent. In this model, p

(5)
i represents the negative selection rate of

the annealed SMC algorithm when applied to the ith dataset. For the same reasons as given

in the context of the false selection rate, a quasi-binomial regression approach is used, but

this time incorporating Prop in the model. The analysis of deviance table shows that SNR

and Cor have the most impact on negative selection rate. Figure 4.8 shows the effects of

SNR and Cor on the logit of the negative selection rate. Higher SNR is associated with lower

negative selection rate, with the effect more pronounced when Cor is low. Higher Cor is

associated with higher negative selection rate, with the effect more pronounced when SNR

is high.

In summary, under our experimental conditions, higher SNR is associated with better

point estimation performance but worse interval estimation performance, while higher Cor is



Figure 4.8: Interaction plot showing the effects of SNR and Cor on the logit negative selection
rate.

individual and joint selection performance. Although higher Prop is associated with higher

selection probabilities of x5 and x6, this effect is confounded with the effect of σ2, so the

direct effect of Prop is unclear. Overall, the annealed SMC sampling algorithm has good

performance when SNR is high and Cor is low.

4.3 Mixed-effects case

We originally planned to conduct a comprehensive simulation study with a design similar

to that used in section 4.2 in the linear mixed-effects model setting, but preliminary studies

showed that the annealed SMC method struggles, in general, to have good selection and

estimation performance in this context, which suggests that such a study would not be in-

formative. Instead, we consider only the setting described in section 4.1, modiĄed to include

a random intercept. The purpose is simply to demonstrate the extent of the deterioration

of the methodŠs performance when it is applied in the mixed-effects context (relative to the

benchmark established in the Ąxed-effects context).

More speciĄcally, we generate the responses from the model

Yij = β0 + β1xi1 + β2xi2 + β3xi3 + bi + εij ,

j = 1, ..., 4, i = 1, ..., n, where εij ∼ N(0, σ2) and bi ∼ N(0, σ2
b ) with σ2 = σ2

b = 5 and

n = 1000. The εij Šs and biŠs are generated independently. A smaller σ2 compared to that

used in section 4.1 is chosen to keep the signal-to-noise ratio the same. The annealed SMC

24



algorithm is applied as in section 4.1 but with αb = 200, νb = 2.1 and σ2
4 = 0.25. We

repeated the procedure only 100 times due to time constraints. The computation time was

3.5 hours. In contrast, the time taken to conduct the analogous simulation study for Ąxed-

effects models was about 70 minutes.

Table 4.4: Estimated marginal selection probabilities of candidate predictors in the mixed-
effects case.

Candidate predictor Estimated marginal

selection probability

Standard error

x1 0.830 0.038

x2 0.810 0.039

x3 0.230 0.042

Table 4.5: Estimated false and negative selection rates for the mixed-effects case.

Selection error metric Estimate Estimated standard deviation

False selection rate 0.121 0.227

Negative selection rate 0.180 0.261

Table 4.6: Estimated coverage probabilities of 95% credible intervals of model coefficients
for the mixed-effects case.

Model coefficient Estimated coverage probability Standard error

β1 0.840 0.037

β2 0.800 0.040

β3 1.000 0.000

The estimated marginal selection probabilities, coverage probabilities, and false and

negative selection rates are lower than those in section 4.1, indicating that the annealed SMC



4.4 Effect of the number of particles





Chapter 5

Discussion

The benchmark case indicates that annealed SMC can have satisfactory selection and es-

timation performance in simple cases. However, its performance deteriorates when more

candidate predictors are added and a random intercept is introduced, as evidenced by the

lower selection probabilities for important predictors, the higher selection probabilities for

unimportant predictors, and the lower coverage probabilities of the 95% credible intervals

for the model coefficients.

In practical applications, the number of candidate predictors will likely far exceed six

(the maximum number we considered in our simulation study)Ůfor example, the CAYACS

data may have at least 30 candidate predictors. Although the number of candidate predic-

tors in our simulation studies does not accurately reĆect the size of the motivating problem,

our work was constrained by available computing time. Moreover, the nature of this project

is primarily exploratory with respect to the performance of the annealed SMC algorithm

and the factors affecting it. Future work should include comprehensive simulation studies

similar to those done for this project but with a larger number of candidate predictors,

larger sample sizes, and data generated using mixed effects models (so that the generated

datasets are more similar to the CAYACS data). In addition, the number of intermediate

distributions and the number of particles should be considered as factors in the studies.

The main challenge of such work is that signiĄcantly more computational resources will be

required.

In the meantime, we have several ideas about how the performance of annealed SMC

sampling could be improved for larger, more complicated problems. In our simulation stud-

ies, the algorithm is tuned minimally; it is not tuned for optimal performance for each

setting due to time constraints. For example, it is common to use hundreds or thousands of

values αt, chosen non-linearly or adaptively, for more complicated models [18], whereas we

used only ten evenly spaced values for our simulation studies. Furthermore, suppose that

we wish to estimate the expectation of φ(ω), ψ = E[φ(ω)] where ω ∼ πT and φ is a function

28



of interest, using P particles ωT
1 , ..., ω

T
P produced by the annealed SMC algorithm, with the

estimator ψ̂ =
∑P

i=1W
i
Tφ(ωT

i ). Then one can show that

1√
N

(ψ̂ − ψ) →d N(0, (σ∗)2)

for some asymptotic variance (σ∗)2 in the limit of the number of particles [14]. By choos-

ing ϕA(x) = I(x ∈ A) for (measurable) subsets A of the sample space, this result may

be interpreted as demonstrating the pointwise convergence of the distribution of weighted

observations to the target distribution as the number of particles increases. Therefore, using

more particles may improve performance up to a certain point, after which we would expect

performance gains to be minimal. The simulation study of the six candidate predictor case





section 4.2 and a half-Cauchy prior for the variance, via the rstanarm::stan_glm function

[7]. The resulting credible intervals are more than 30 times shorter than those computed

using annealed SMC sampling applied to Bayesian model averaging. Hence we Ąnd that the

credible intervals computed by annealed SMC in our simulations are useful in determining
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Appendix A

Analysis of deviance tables

Table A.1: Analysis of deviance table for the estimated coverage probability of 95% credible
intervals for β1.

Effect Change in deviance d.f. p-value

SS 6.29 1.00 0.01

SNR 167.20 1.00 0.00

Prop 3.13 1.00 0.08

0.08



Table A.2: Analysis of deviance table for the estimated coverage probability of 95% credible
intervals for β2.

Effect Change in deviance d.f. p-value

SS 12.52 1.00 0.00

SNR 176.24 1.00 0.00

Prop 2.19 1.00 0.14

Cor 1.36 1.00 0.24

SS:SNR 11.46 1.00 0.00

SS:Prop 4.74 1.00 0.03

SS:Cor 0.00 1.00 0.99

SNR:Prop 0.80 1.00 0.37

SNR:Cor 1.83 1.00 0.18

Prop:Cor 0.31 1.00 0.58

Table A.3: Analysis of deviance table for the estimated coverage probability of 95% credible
intervals for β3 when Prop is high.

Effect Change in deviance d.f. p-value

SS 6.50 1.00 0.01

SNR 55.33 1.00 0.00

Cor 1.58 1.00 0.21

SS:SNR 0.52 1.00 0.47

SS:Cor 0.78 1.00 0.38

SNR:Cor 1.39 1.00 0.24

Table A.4: Analysis of deviance table for the estimated coverage probability of 95% credible
intervals for β4 when Prop is high.

Effect Change in deviance d.f. p-value

SS 11.63 1.00 0.00

SNR 102.71 1.00 0.00

Cor 0.14 1.00 0.71

SS:SNR 13.79 1.00 0.00

SS:Cor 1.02 1.00 0.31

SNR:Cor 2.55 1.00 0.11
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Table A.5: Analysis of variance table for the estimated bias of the estimated posterior mean
of β1.

Effect Sum of squares d.f. F p-value

SS 0.13 1.00 0.61 0.43

SNR 2.18 1.00 10.38 0.00

Prop 2.33 1.00 11.08 0.00

Cor 11.77 1.00 55.90 0.00

SS:SNR 0.60 1.00 2.84 0.09

SS:Prop 0.46 1.00 2.16 0.14

SS:Cor 0.00 1.00 0.00 1.00

SNR:Prop 0.48 1.00 2.30 0.13

SNR:Cor 0.40 1.00 1.90 0.17

Prop:Cor 0.11 1.00 0.53 0.46

Residual 671.29 3189.00

Table A.6: Analysis of variance table for the estimated bias of the estimated posterior mean
of β2.

Effect Sum of squares d.f. F p-value

SS 1.03 1.00 4.73 0.03

SNR 2.85 1.00 13.03 0.00

Prop 0.32 1.00 1.47 0.22

Cor 7.49 1.00 34.32 0.00

SS:SNR 1.05 1.00 4.81 0.03

SS:Prop 0.92 1.00 4.22 0.04

SS:Cor 0.11 1.00 0.52 0.47

SNR:Prop 0.64 1.00 2.91 0.09

SNR:Cor 1.11 1.00 5.08 0.02

Prop:Cor 0.27 1.00 1.25 0.26

Residual 696.06 3189.00
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Table A.7: Analysis of variance table for the estimated bias of the estimated posterior mean
of β3 when Prop is high.

Effect Sum of squares d.f. F p-value

SS 0.00 1.00 0.00 1.00

SNR 4.46 1.00 20.16 0.00

Cor 6.36 1.00 28.74 0.00

SS:SNR 0.72 1.00 3.26 0.07

SS:Cor 0.08 1.00 0.36 0.55

SNR:Cor 0.63 1.00 2.85 0.09

Residual 352.42 1593.00

Table A.8: Analysis of variance table for the estimated bias of the estimated posterior mean
of β4 when Prop is high.

Effect Sum of squares d.f. F p-value

SS 0.18 1.00 0.78 0.38

SNR 2.43 1.00 10.51 0.00

Cor 6.00 1.00 25.94 0.00

SS:SNR 0.01 1.00 0.05 0.82

SS:Cor 0.00 1.00 0.00 0.97

SNR:Cor 0.04 1.00 0.19 0.66



Table A.9: Analysis of deviance table for the estimated selection probability of x1.

Effect Change in deviance d.f. p-value

SS 1.63 1.00 0.20

SNR 24.16 1.00 0.00

Prop 9.19 1.00 0.00

Cor 10.50 1.00 0.00

SS:SNR 3.37 1.00 0.07

SS:Prop 0.67 1.00 0.41

SS:Cor 0.02 1.00 0.88

SNR:Prop 0.69 1.00 0.41

SNR:Cor 10.93 1.00 0.00

Prop:Cor 0.36 1.00 0.55

Table A.10: Analysis of deviance table for the estimated selection probability of x2.

Effect Change in deviance d.f. p-value

SS 3.19 1.00 0.07

SNR 28.89 1.00 0.00

Prop 4.57 1.00 0.03

Cor 11.95 1.00 0.00

SS:SNR 7.67 1.00 0.01

SS:Prop 9.75 1.00 0.00

SS:Cor 0.43 1.00 0.51

SNR:Prop 5.14 1.00 0.02

SNR:Cor 2.65 1.00 0.10

Prop:Cor 0.15 1.00 0.70
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Table A.11: Analysis of deviance table for the estimated selection probability of x3 when
Prop is low.

Effect Change in deviance d.f. p-value

SS 3.94 1.00 0.05

SNR 39.87 1.00 0.00

Cor 10.33 1.00 0.00

SS:SNR 2.03 1.00 0.15

SS:Cor

320.172 572.498 TmSS:Cor2.0579.14 566867..54 5664.02 l
S
q
10 0 0 10 0 0 cm BT
/R52 10.9091 Tf
1 0 1d1 351.919 572.498 TSS:Cor1.579.14 566867..54 5664.02 l
S
q
10 0 0 10 0 0 cm BT
/R52 10.9091 Tf
1 0 0.27398.515 572.498 TmSS:Cor

Table A.11: Analysis of deviance table for the estimated selection probability of x3 whenProp



Table A.14: Analysis of deviance table for the estimated selection probability of x4 when
Prop is high.



Table A.16: Analysis of deviance table for the estimated selection probability of x6.

Change in deviance d.f. p-value

SS 2.04 1.00 0.15

SNR 150.08 1.00 0.00

Prop 32.23 1.00 0.00

Cor 9.97 1.00 0.00

SS:SNR 1.61 1.00 0.20

SS:Prop 0.08 1.00 0.78

SS:Cor 0.15 1.00 0.70

SNR:Prop 0.53 1.00 0.47

SNR:Cor 0.00 1.00 0.97

Prop:Cor 0.00 1.00 0.96



Table A.19: Analysis of deviance table for the estimated negative selection rate.

Effect Change in deviance d.f. p-value

SS 7.22 1.00 0.01

SNR 68.13 1.00 0.00

Prop 12.48 1.00 0.00

Cor 36.34 1.00 0.00

SS:SNR 12.67 1.00 0.00

SS:Prop 6.98 1.00 0.01

SS:Cor 0.22 1.00 0.64

SNR:Prop 7.27 1.00 0.01

SNR:Cor 18.23 1.00 0.00

Prop:Cor 1.31 1.00 0.25
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