




















of interest primarily focus on predictors with Ąxed effects.

We justify our choice to use annealed SMC sampling for our project as follows. Initially,

we explored the use of reversible jump Markov chain Monte Carlo to obtain draws of the

parameters and the model jointly from the posterior distribution, using a formulation that



is a preferable alternative to MCMC when the latter produces chains with poor conver-

gence. SMC sampling can be adapted to sampling a single target distribution π, leading to

annealed SMC. Annealed SMC is simple to implement and does not rely on convergence

arguments in the same sense as do MCMC methods, which tends to reduce computation

time while still maintaining accuracy of the posterior distribution. By sampling both mod-

els and parameters, the need to compute the evidence for all possible models is avoided,

thereby enabling the use of annealed SMC for more complicated models and more candidate









predictors addresses scaling concerns, and the choice of τ is at the discretion of the analyst

[8]. We comment on this issue further in section 5.

The interpretation of the model coefficients, the βj Šs, when averaged across models is an

important consideration when their estimates are of interest. In a single model that contains

a continuous predictor xj , βj is the change in the mean response when xj increases by one

unit and other predictors are held constant. Given a prior distribution on the parameters

of this model, the posterior distribution of βj represents the effect of xj after having ad-

justed for other predictors in the model. When the posterior distributions of βj are averaged

across models containing βj , the mode of the averaged distribution may be understood as

the change in mean response when xj increases by one unit adjusted by the remaining can-

didate predictors, which possibly have coefficients of zero. For models not containing xj , βj

is set to be zero, meaning xj has no effect on the mean response. Hence when the posterior



suggesting otherwise, π1, ..., πT −1 are not true posterior distributions of (Θ, ζ) conditioned

on y. But they are proper densities that depend on y.

The main idea is to use the intermediate distributions πt to facilitate the sampling of

πT











Table 4.1: Estimated marginal selection probabilities of candidate predictors in Ąxed-effects
benchmark case.

Candidate predictor Estimated marginal

selection probability

Standard error

x1 0.962 0.009

x2 0.938 0.011

x3 0.072 0.012

Table 4.2: Estimated false and negative selection rates for the Ąxed-effects benchmark case.

Selection error metric Estimated mean Estimated standard deviation

False selection rate 0.036 0.129

Negative selection rate 0.050 0.150

Table 4.3: Estimated coverage probabilities of 95% credible intervals of model coefficients
for Ąxed-effects benchmark case.

Model coefficient Estimated coverage probability Standard error

β1 0.970 0.008

β2 0.944 0.010

β3 1.000 0.000

equal to the nominal level of 95% except in the case of β3. These statistics suggest that our

implementation of annealed SMC is correct and is effective at selecting important predictors



where 06 is the zero vector in R
6 and
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Let

Yi = β0 + xi
Tβ + εi,

where βT =
(

β1 · · · β6
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datasets. The parameters σ2
X and β are chosen to be similar to those in section 4.1.













and

Var(Fi ♣Si) = ϕSip
(4)
i (1 − p

(4)
i ),

where

logit(p
(4)
i ) = η

(4)
i

and the FiŠs are independent. In this model, p
(4)
i represents the false selection rate of the

annealed SMC algorithm when applied to the ith dataset. A quasi-binomial regression model

is used because a binomial GLM is inappropriate: the outcomes associated with different

predictors (important/unimportant) conditional on selection are not independent and do

not have a common binary distribution. Note that the false selection rate will tend to be







algorithm is applied as in section 4.1 but with αb = 200, νb = 2.1 and σ2
4 = 0.25. We

repeated the procedure only 100 times due to time constraints. The computation time was

3.5 hours. In contrast, the time taken to conduct the analogous simulation study for Ąxed-

effects models was about 70 minutes.

Table 4.4: Estimated marginal selection probabilities of candidate predictors in the mixed-
effects case.

Candidate predictor Estimated marginal

selection probability

Standard error

x1 0.830 0.038

x2 0.810 0.039

x3 0.230 0.042

Table 4.5: Estimated false and negative selection rates for the mixed-effects case.

Selection error metric Estimate Estimated standard deviation

False selection rate 0.121 0.227

Negative selection rate 0.180 0.261

Table 4.6: Estimated coverage probabilities of 95% credible intervals of model coefficients
for the mixed-effects case.

Model coefficient Estimated coverage probability Standard error

β1 0.840 0.037

β2 0.800 0.040

β3 1.000 0.000

The estimated marginal selection probabilities, coverage probabilities, and false and

negative selection rates are lower than those in section 4.1, indicating that the annealed SMC









of interest, using P particles ωT
1 , ..., ω

T
P produced by the annealed SMC algorithm, with the

estimator ψ̂ =
∑P

i=1W
i
Tφ(ωT

i ). Then one can show that

1√
N

(ψ̂ − ψ) →d N(0, (σ∗)2)

for some asymptotic variance (σ∗)2 in the limit of the number of particles [14]. By choos-

ing ϕA(x) = I(x ∈ A) for (measurable) subsets A of the sample space, this result may

be interpreted as demonstrating the pointwise convergence of the distribution of weighted

observations to the target distribution as the number of particles increases. Therefore, using

more particles may improve performance up to a certain point, after which we would expect

performance gains to be minimal. The simulation study of the six candidate predictor case
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