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Chapter 1

Introduction

The Cognitive Reflection Test (CRT) (Frederick, 2005) was developed to assess a subject’s
“reflectiveness”, operationalized in the cognitive psychology literature as the ability to over-
ride an incorrect but intuitively appealing response (a so-called “gut instinct”). The CRT
is a short, three-question test that is predictive of many cognitive abilities and tendencies
(Bialek and Pennycook, 2018). It was a precursor to the Comprehensive Assessment of
Rational Thinking (CART), a more in-depth “rationality” test currently being developed
(Stanovich et al., 2016). “Rationality” subsumes the construct of “reflectiveness” by referring
to the ability to override intuitive responses to obtain a correct answer, as operationalized
on the CART.

Part of this literature is concerned with disentangling the concepts of “intelligence” (as
measured by Intelligence Quotient [IQ] tests) and “rationality” (as measured by the CRT
or CART). Of particular interest to researchers is whether subjects tend to improve their
scores over time (for example, via repeated exposure to the same test questions), in which
case the tests may not retain their predictive validity. With respect to IQ, the literature
provides no convincing evidence that IQ scores improve in the long-term (Haier, 2014). But,
with respect to rationality scores, the literature is so far sparse. The first study to assess
this question was Meyer et al. (2018), who administered the CRT to subjects multiple times
over a predefined time period. We use the data from that longitudinal study in the present
work.

Our project extends the work of Meyer et al. (2018), who used conventional linear regression
modelling in an attempt to answer various questions about changes in subjects’ CRT scores
over time. These models did not sufficiently take into account the longitudinal nature of the
data, the dependence among responses measured on the same individual, or the discreteness
of the test scores. Though Meyer et al. (2018) intimates that the CRT dataset suggests
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the presence of subpopulations, their models do not account for them. To address these
limitations, we develop a bivariate longitudinal model to describe the relationship between
various predictors (including measures of prior exposure to the test) and two dependent
response variables: subjects’ score and time spent completing the test. We conceive of the



Chapter 2

Cognitive Re�ection Test (CRT)
Data

2.1 CRT Dataset Overview

The individuals in this study comprised over 14,000 subjects from Amazon Mechanical

Turk (MTurk)�a crowdsourcing website where volunteers can participate in tasks�and

over 28,000 observations across four separate series of surveys. (See Appendix A for a

discussion of the reliability of MTurk samples.) The data were collected from Novem-

ber 2013 to April 2015. We chose the largest series, Fall 2014 (which included observa-

tions from Sept. 3, 2014 to Jan. 12, 2015), to be the focus of our present work. The raw

dataset is available publicly from the Judgment and Decision Making journal's website

(http://journal.sjdm.org/vol13.3.html).

After data wrangling (see Sections 2.2�2.4), the Fall 2014 series consisted of 6,228 obser-

vations on 2,920 unique subjects. The number of times that subjects took the test varied,

ranging from 1 to 15 within this series. Figure 2.1 summarizes the distribution of this

variable.

2.2 Responses of Interest

Meyer et al. (2018) treated CRT scores as the sole response variable in their analyses

(using the time that subjects took to complete the test as a predictor in one). In contrast,

we consider time to completion as another response variable, reasoning that it conveys

information about the underlying latent variable (�re�ectiveness�) that we're interested in

capturing.
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Figure 2.1: Distribution of subjects’ exposures, i.e., number of times subjects took the CRT.

2.3 Predictors

Various predictor variables may influence the distribution of our two response variables. In
this section we discuss our selection of these variables and our handling of idiosyncratic and
missing values.

Our primary predictor of interest is the number of times a subject has taken the CRT within

the series, including the current test. This variable is denoted by nPrevS and takes values
from 1 to 15. It is a time-varying, numeric predictor. Subjects may have taken the CRT
prior to these series, but we do not have access to this information.

Unlike nPrevS, the remaining predictors we selected were self-reported, and each presents
challenges to address. First, subjects self-reported the number of questions they had seen



that time point. However, inconsistencies occur in practice: Subjects don’t always report “3”
after the first test exposure, and some even report decreasing values over time. Therefore, we
had to determine whether to keep the values as reported or to implement a modification. As
Meyer et al. (2018) noted, numSeencould be informative not only for its intended purpose
(measuring CRT items seen), but also as a proxy for a subject’s memory of the CRT and
mathematical ability. That is, a subject’s seeing the items but not remembering them is
arguably equivalent to never having seen the items. Thus, this predictor potentially conveys
useful information about the responses even though it doesn’t accurately represent number
of CRT items seen previously.

An additional concern is that nPrevS and numSeencould be highly correlated since they
both measure familiarity with the CRT—albeit one objectively and the other subjectively.
However, we think this concern is unwarranted for two reasons. First, as discussed, numSeen

likely captures indirect information not reflected in nPrevS. Second, in a preliminary analysis



contained in this variable is likely contained within aveSATS, and thus decided to exclude
it. Table 2.2 provides further support for this decision.

Table 2.1 summarizes the response and predictor variables.

Variable Variable Type Description

CRT score Response (Discrete) CRT score



However, other MTurks (including the roughly one-quarter of MTurks who are not Amer-
ican; see Appendix A) likely do not have SAT scores. In other words, we think that the
missing data mechanism is likely related to other demographic characteristics about which
we may not have information. That is, the missing data mechanism is likely either missing at
random (MAR) or missing not at random (MNAR), but we cannot distinguish which. Since
imputation could introduce unintended bias in the predictor values, we elect to exclude
observations with missing SAT values from our analysis. We discuss possible implications
of this decision in Chapter 5.

Once the observations with missing aveSATSvalues are removed, variables numSeen, age,
and male each have a relatively small proportion of missing values (8%, 2%, and 3%, respec-
tively). We omit all the observations with missing values of these predictors. Other than
aveSATS, we treat these missing predictor values as MAR, as we can reasonably assume
that a missing value is unrelated to the missing data but related to an observed variable
or parameter of interest (e.g., subjects did not self-report this value due to an inability to
recall, which may be related to aveSATS). The implications are likely minimal due to the
small proportion of missing values.

Finally, about 1.5% of the total observations in the Fall 2014 series contained missing
values for time to completion of the CRT, the second response variable. These missing
values occurred because subjects did not submit their test. The time they spent on the test





Figure 2.4 displays the distribution of the time response (on the logarithmic scale), broken
down by nPrevS (left) and by numSeenat nPrevS = 1 (right). The former graph reveals an
approximately normal distribution for each value of nPrevS. We also observe that additional
test exposures are associated with lower times to completion. The latter graph likewise
reveals an approximately normal distribution for each value of numSeenat subjects’ first
test exposure. The times to completion are markedly different for the lowest and highest
values of numSeen. With values of nPrevS > 1 (see Appendix C), this difference is much
less, implying that the effect of numSeenon CRT time to completion is most pronounced at
the first test exposure. Similar graphs for the other predictors suggest little effect on time
to completion (see Appendix C).

Figure 2.4: Distribution of the logarithm of time to completion for nPrevS� 4 (left) and for
numSeenat nPrevS=1 (right)

Next, Figure 2.5 displays the ordinary least squares (OLS) estimates of the effects of nPrevS

when CRT score (left) and CRT log time to completion (right) are regressed on the predic-
tors separately for each subject (for subjects who completed the test more than once). We
do not make formal inference based on these estimates; we use them simply for visualizing
the trends in subjects’ observed test scores and completion times. The plot for CRT score
reveals a peak at 0, describing the vast majority of subjects whose scores remained constant
over time. The majority of the remaining estimates are greater than 0, with a small pro-
portion less than 0. The plot for time to completion reveals a peak at 0, with the majority
of estimates being negative, implying that subjects generally took less time to complete
the test with additional exposures. We also observe a small but non-negligible proportion
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0.27 log seconds; and 9% had decreasingCRT scores, an average CRT score decrease of 0.60,
and an average decrease in time spent of 0.42 log seconds. In other words, the small subset
of subjects who improved their test scores over time reflected longer than did subjects who
exhibited constant scores. These statistics and the scatterplots in Figure 2.6 are consistent
with the observation by Meyer et al. (2018) that a small proportion of subjects “continue
to spend time on the test”.

Figure 2.6: Average time to completion (log scale) vs. OLS estimates of the effects of nPrevS
on CRT score by subjects’ first test score (left); OLS estimates of the effects of nPrevS on
log time to completion vs. OLS estimates of the effects of nPrevSon CRT score by subjects’
first test score (right)
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Chapter 3

Statistical Methods

To model our unbalanced longitudinal data and explore the relationship between our predic-
tors and bivariate response, we consider extensions of traditional generalized linear mixed
models. In the following sections, we describe bivariate longitudinal models that can be
applied to the CRT data and, in particular, the estimation and computational challenges
that can arise in maximizing the likelihoods. Ultimately, we propose three models; the first
serves as our foundational model, and the second and third extend the first to allow for
subpopulations (“clusters”) of individuals with similar levels of rationality and reflective-
ness.

3.1 Models

Let Yij and Tij denote subject i ’s CRT score and response time (on the logarithmic scale),
respectively, on the j th attempt of the CRT in the Fall 2014 series, i = 1 ; : : : ; n, j = 1 ; : : : ; ni .
Since a subject is awarded one point for each correct answer on the CRT, Yij 2 f 0; 1; 2; 3g.
In contrast, Tij takes values on the real line.

3.1.1 Bivariate Longitudinal Model



logit� ij = x0
ij � + Ui

and where the random effects, Ui , are independent and distributed as N (0; � 2
u). We conceive

of Ui as a latent variable representing “rationality”. Likewise, we model the logarithm of the
time to completion as

Tij j Vi � N(� ij ; � 2
t ),

where

� ij = x0
ij � + Vi

and where the random effects, Vi , are independent and distributed as N (0; � 2
v ). We conceive

of Vi as a latent variable representing “reflectiveness”.

We assume that Yij j Ui is independent of Yij 0, j 0 6= j , all Tij ’s, and Vi . We also assume that
Tij j Vi is independent of Tij 0, j 0 6= j , all Yij ’s, and Ui . Finally, we assume that the joint
distribution of the random effects is bivariate normal, that is,

(Ui ; Vi ) � N (0; � ),

where

� =

"
� 2

u �� u � v

�� u � v � 2
v

#

.

Figure 2.4 motivates the model for Tij j Vi . Histograms of the logarithm of time to comple-
tion given combinations of predictor variables reveal that the marginal distribution of Tij

is approximately normal. From this perspective, the proposed models for Tij j Vi and Vi

(which imply that Tij is normally distributed) are reasonable.

With these assumptions, we can write the likelihood as a product of the conditional distri-
butions:

L [1]( ) =
Y

i

Z Z � Y

j

f Yij jUi (yij jui )f Tij jVi (t ij jvi )
�

� f Ui ;Vi (ui ��u





over time is expected to be negligible. Our original model can be considered a special case
of this extended model where the probability associated with one cluster is 0.

Let �x ij be the vector of all predictor variables except nPrevS observed on subject i at time
j . Let sij be the value of nPrevS observed on subject i at time j . Let Ci 2 {1,2} be a latent
cluster indicator, where clusters correspond to the two subpopulations described above.
We assume that the Ci ’s are independent and distributed as P(Ci = ci ) =  ci . As per
our original model, we assume that (Ui ; Vi ) are independent, bivariate normal distributed
random effects. We then assume that



reflective. As in the two-cluster model, we assume that the Ci ’s are independent and dis-
tributed as P(Ci = ci ) =  ci . We define  = (  2;  3;  4). As in the prior two models, we
assume that the tuples (Ui ; Vi ) are independent and distributed as bivariate normal. We
further assume that Yij j Ui ; Ci is distributed as Bin(3; � ij ), where

logit � ij = � ci 0 + � ci 1sij + �x0
ij � + ui :

We further assume that Tij j Vi ; Ci is distributed as N (� ij ; � 2
t ), where

� ij = � ci 0 + � ci 1sij + �x0
ij � + vi :

The purpose of this model is to allow a coarse categorization (via the clusters) of individuals
as rational/not rational and reflective/not reflective. The random effects Ui and Vi account
for the remaining variation in the underlying levels of these characteristics. We envision that
cluster 1 would correspond to the subpopulation of individuals who are neither rational nor
reflective. We would expect � 11 = 0 , as we expect that subjects who aren’t reflective do not
improve their CRT scores with repeated test exposure. Cluster 2 would correspond to the
subpopulation of individuals who are not rational but are reflective. Like in cluster 1, we
would expect � 21 = 0 and � 20 to be relatively low, but � 20 to be relatively high. Cluster 3
would correspond to the subpopulation of individuals who are rational and reflective. Here
we would expect � 30 and � 30 to be relatively high, and expect � 31 to be positive and � 31

to be 0 or negative. Cluster 4 would correspond to the subpopulation of individuals who
are rational but either aren’t reflective or provide no information about their reflectiveness
because they quickly chose the correct answers. We therefore expect � 41 = 0 . We further
expect � 40 to be high and � 40 to be low.

The likelihood is

L [4]( ) =
Y

i

Z Z X

ci

� Y

j

f Yij jUi ;C i (yij jui ; ci )f Tij jVi ;C i (t ij jvi ; ci )
�

� f Ci (ci ) � f Ui ;Vi (ui ; vi )dui dvi

=
Y

i

Z Z X

ci

� Y

j

� yij
ij (1 � � ij )3� yij �

1
� t

exp
�

�
(t ij � � ij )2

2� 2
t

� !

�  ci � f Ui ;Vi (ui ; vi )dui dvi ;

(3.3)

where  = ( � ; � ; � t ; � u ; � v ; �;  ) is the vector of parameters to be estimated.

3.2 Estimation

Direct maximization of the likelihoods (3.1)–(3.3) requires integrating complex functions
with respect to ui and vi . These integrals do not have closed form solutions. Instead, we
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When Q = 1 , this approximation is the Laplace approximation. Higher values of Q lead to
greater accuracy, however, and are thus preferable. Pinheiro and Chao (2006) argue that
Q � 7 is generally sufficient. In our case, Q = 15 quadrature points seemed sufficient to



associated with the cluster model with K clusters is

` [K ]
c ( ) = log

2

4
Y

i

0

@
Y

j

f Yij jUi ;C1f 5.729 -1.216 Td 1.382 08.216 Td [(i)]TJ/F29 70.9091 Tf 8.682 59682436 [(()]TJ/F38 20.9091 Tf 4.242 03Td [(U)]yJ/F29 7.9701 Tf 5.341 -8.216637 [(ij)]TJ/F32 71.9091 Tf 4.201 66 16637 [(ij)TJ/F28 10.9091 Tf 10.3.03Td [(U)]uJ/F29 7.9701 Tf 5.362 05.216637 [(ij)]J/F28 10.9091 Tf 10.3.381 16637 [(ij);(e)67]TJ/F25 1.9701 Tf 5.39.57.216637 [(ij)]J/F28 15.9091 Tf 10.3.381 16637 [(ij)1Y

ij

j

i





different objective functions:

Q[K ]( ;  (p) ) � Q[K ]
1 (� ;  (p) ) + Q[K ]

2 (� ; � 2
t ;  (p) ) + Q[K ]

3 (� 2
u ; � 2

v ; �;  (p) ) + Q[K ]
4 ( ;  (p) ):

These functions can be approximated using Monte Carlo sampling or possibly Gauss-
Hermite quadrature (see Appendix E) and then maximized separately.

We maximize these functions for the current estimates of the parameters,  (p) . We then
iterate the E- and M-steps until the distance between consecutive estimates is less than a
specified (small) value, � .

3.2.3 Starting Values

To obtain starting values for the parameter estimates in the one-cluster model, we first
fit separate (generalized) linear mixed models to the CRT scores and completion times,
treating these responses as independent. That is, we maximized

L [Y ]( ) =
Y

i

Z � Y

j

f Yij jUi (yij jui )
�

� f Ui (ui )dui

and

L [T ]( ) =
Y

i

Z � Y

j

f Tij jVi (t ij jvi )
�

� f Vi (vi )dvi .

For our correlation parameter, we used a starting value of 0.

For our two-cluster model, to obtain starting values for the fixed and random effect param-
eters common to each cluster, we first fit the two-cluster model with no random effects. We
used the MLEs of the parameters in this model—along with small values for � u and � v and
0 for � —as starting values for estimating the full two-cluster model.

3.3 Predicting Random Effects

Predicting random effects is often not of interest, especially when they may not have any
physical meaning. However, in our case, we construe them as representing subjects’ ratio-
nality and reflectiveness, which are fundamental characteristics of interest.

We are interested in predicting Ui and Vi given Y and T . To this end, after computing
the MLEs of the model parameters, ^ , we can return to step 1 in the iterative estimation
procedure discussed in Section 3.2.2. The prediction (ûi ; v̂i ) is the posterior mode of the
distribution of (Ui ; Vi ) given the observed data. It can be interpreted as the level of ra-
tionality and reflectiveness of the i th subject. Values of zero correspond to subjects with

22



average levels of rationality and reflectiveness, while values less than and greater than zero
indicate below and above average levels, respectively. The magnitude of the values should
be interpreted relative to the estimated standard deviations of Ui and Vi .

3.4 Implementation

We implemented the aforementioned methods (with the exception of Monte Carlo sampling)
in R. We used the function GLMMadaptive::mixed_model to fit the binomial generalized
linear mixed model to the score data and the lme4::lmer function to fit the linear mixed
model to the completion time data (as described in Section 3.2.3). We also used the nlm

function for maximizing objective functions and the package gaussquadto obtain the Gauss-
Hermite quadrature points and weights. Otherwise, we wrote our own code.
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Chapter 4

Results

Having described the statistical methods we used to analyze our data, we now discuss the
fitted models and use them to answer a variety of field-related questions.

4.1 One-Cluster Model: Fit and Interpretation

For our one-cluster model, the parameter estimates and associated standard errors are
displayed in Table 4.1.

Parameter � 0 � 1 � 2 � 3 � 4 � 5

Estimate
SE

� 0.688
0.109

0.064
0.016

0.305
0.031

1.105
0.060

0.963
0.119

0.231
0.057

Parameter � 0 � 1 � 2 � 3 � 4 � 5

Estimate
SE

4.324
0.028

� 0.115
0.004

� 0.275
0.009

� 0.052
0.013

� 0.044
0.028

0.016
0.013

Parameter log(� t ) log(� u) log(� v) log[(1+� )/(1-� )]

Estimate
SE

� 0.549
0.012

0.928
0.027

� 0.632
0.025

0.080
0.058

Table 4.1: One-cluster model parameter estimates and standard errors

Our primary question of interest—whether repeat exposures are associated with increases in
CRT scores—can now be addressed. The 95% confidence interval (CI) for � 1 (the coefficient
of nPrevS) is [0.033, 0.095], suggesting that the effect of repeat exposures on test scores
is indeed positive. The estimated effect of the subjective metric of CRT item exposure,
numSeen, is also positive, but stronger in magnitude (95% CI [0.245, 0.365]). These estimates
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Unfortunately, while we attempted to fit the four-cluster model using both AGQ and the EM
algorithm with GHQ, we were not able to obtain reliable results in time for this report.

4.4 Model Assessment

As an informal check of the fit of our one-cluster model, we compare the distributions of
observed CRT scores and times to completion at nPrevS=1 to the estimated distributions
of the score and time responses using parameter estimates from our fitted model. See Ap-
pendix D for the relevant plots and further details on how the distributions were estimated.
The estimated distribution of CRT scores corresponds reasonably well to the real data. The
estimated distribution of completion times corresponds very closely to the real completion
times.

4.5 Random Effects Predictions

Figure 4.1 depicts histograms of the predicted latent variables, ûi and v̂i , based on the
final parameter estimates of our one-cluster model and step 1 of the iterative estimation
procedure discussed in Section 3.2.1. They represent the deviations in rationality and re-
flectiveness from that of an average subject (i.e., 0), on the scale of each latent variable’s
estimated standard deviation. For example, since �̂ u = 2 :530, a value of û = 5 :06 corre-
sponds to a subject with rationality lying two standard deviations above the mean. The
apparent bimodal distribution of rationality provides further evidence of two or more clus-
ters.

4.6 Computational Challenges

Fitting our proposed models provided notable computational challenges. Given the two-
dimensional integral, the large sample size, and the large number of parameters to be esti-
mated, especially in the cluster models, estimation was a computationally arduous process.
Using Google Compute (8 vCPUs, 52 GB memory), we initially used GHQ and the EM
algorithm to fit the one-cluster model. Using Q = 5 quadrature points, each iteration of the
EM algorithm took about 1.5 hours; with Q = 15, each iteration took over 8 hours. For the
two-cluster model, the average run times were about 2.5 and 20 hours, respectively. Using
the large number of quadrature points that would have been necessary to find the MLEs
would have been prohibitive. On the other hand, using AGQ, the algorithm for fitting the
one-cluster model converged in roughly 2 hours.
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Figure 4.1: Distributions of predicted latent variables
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become biased as the variance of the random effects becomes high. Given that our starting
values for the variance parameters (see end of Section 3.2.3) are not particularly large, we are
not too concerned about the aforementioned scenario. However, Litière et al. (2008) caution
that, because the estimate of the variance “is the only tool to study the variability of the
true random-effects distribution”, it is also possible that bias in our starting values could
in turn bias the estimates of the fixed effects. We have also made the (perhaps strong)
assumption that the random effects distribution does not depend on the predictors, an
issue for which Heagerty and Zeger (2000) provide an alternative approach. In the end, we
justified our choice of distributions for the random effects by assessing the appropriateness
of the implied marginal distributions of the responses, and by relying on the conclusion of
McCulloch and Neuhaus (2011) that “most aspects of statistical inference are highly robust
to [assuming a normal distribution for the random effects]”.

We have numerous ideas for further work in this area. One involves extending our bivari-
ate longitudinal model by treating CRT score as multinomial rather than binomial. This
approach was used by Campitelli and Gerrans (2013), who expanded the categories of in-
correct CRT responses to distinguish between wrong “intuitive” answers (for example, the
“$0.10” answer on the Bat & Ball problem, or “24 days” on the Lilypads problem) and
wrong “idiosyncratic” answers (wrong answers other than the “intuitive” ones). Adopting
this approach in the bivariate longitudinal model context may prove informative, though



Overall, our novel approach in modelling the CRT data allows us to rigorously answer key
questions of interest in the cognitive psychology and psychometric literature. We hope that
our methods and analysis have contributed meaningfully to this area of inquiry and will
motivate future research.
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Appendix B

CRT Original Questions

1. A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball. How much
does the ball cost?

cents

2. If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines
to make 100 widgets?

minutes

3. In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48
days for the patch to cover the entire lake, how long would it take for the patch to cover
half of the lake?

days

Note that modified versions of these questions were given in the other series that we excluded
in our analysis.
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Figure C.2: Distribution of CRT score for age at nPrevS=1

Figure C.3: Distribution of CRT score for male at nPrevS=1

We also presented histograms of CRT time to completion for different levels of nPrevS and
for different levels of numSeenat nPrevs = 1 (see Figure 2.3). Below are histograms of CRT
time to completion for different levels of aveSATS(Figure C.4), age (Figure C.5), and male
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(Figure C.6) each at nPrevs = 1. None of these figures reveals any obvious distributional
differences across levels.

Figure C.4: Distribution of the logarithm of time to completion for aveSATSat nPrevS=1

Figure C.5: Distribution of the logarithm of time to completion for age at nPrevS=1
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Figure C.6: Distribution of the logarithm of time to completion for male at nPrevS=1

Additionally, Figure C.7 displays histograms of CRT time to completion for different levels
of numSeenfor nPrevS = 2 as a contrast to the histogram on the right side of Figure 2.4
(where nPrevS= 1). We can observe that, at subsequent test exposures, the distribution of
numSeenis slightly right-skewed.
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Figure C.7: Distribution of the logarithm of time to completion for numSeenat nPrevS=2
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Appendix D

Further Model Assessment

To provide an informal check of our one-cluster model �t, Figure D.1 displays both the
real CRT score and time to completion responses, along with their respective estimated
marginal distributions.

For the score response, we estimate the probabilities of each CRT score using the estimated
parameters and the observed predictor values, restricted tonPrevS=1. Since the marginal
distribution of Yij does not have a closed form, we use Gauss-Hermite quadrature with
100 quadrature points to approximate the four probabilities. The bars on the leftmost
plot correspond to the empirical probabilities of success for each CRT score, while the red
horizontal lines correspond to the estimated probabilities.

For the time to completion, the marginal distribution has a closed form, namely

Tij � N(� ij ; � 2
v + � 2

t



Figure D.1: Observed and estimated distributions of CRT score (left) and time to completion
(right) at nPrevS=1
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Appendix E

Gauss-Hermite Quadrature

As discussed in Section 3.2.3, given sufficient computing resources, standard Gaussian
quadrature could be used to evaluate the integrals in our multi-cluster model’s objective
function, Q[K ]( ;  (p) ).

Recall that when the weight function is w(z) = e� z2 , the GHQ rule is commonly used to
determine the weights and abscissae. By performing some variable transformations, we will
show that our objective functions are of this form.

We rewrite the joint density of Ui and Vi as

f (p)
Ui ;Vi

(ui ; vi ) = f (p)
Vui



With these transformations, we can rewrite our objective function as

Q[K ]( ;  (p) )

=
nX

i =1

h
D [K ](p)

i

i � 1 n iX

j =1

ZZ
h[K ](p)

1 (� ; zi ; z�
i ) e� z2

i dzi e� z� 2
i dz�

i

+
nX

i =1

h
D [K ](p)

i
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i

+
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i
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