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Abstract

The ataxin-2 gene (ATXN2) encodes a ribonucleic acid (RNA) binding protein involved

in messenger RNA translation and regulation. Large polyglutamine (CAG) expansions or

repeat regions in ATXN2 are causative of the neurodegenerative disease spinocerebellar

ataxia type 2 (SCA2) and intermediate expansions are considered to be a risk factor for

the neurodegenerative disease amyotrophic lateral sclerosis (ALS). However, most variants

in the repeat regions of ATXN2 remain unreported because they are di�cult to capture

with traditional short-read sequencing. We analyze rare genetic variants found in short-

read sequencing of exon 1, a polyglutamine repeat region of the ATXN2 gene. The variants

were identi�ed during diagnostic exome sequencing of patients for neurodegenerative dis-

ease. After adjusting for potentially confounding variables such as age, biological sex, and

the enrichment kit used in the sequencing, we �nd the variants to be associated with neu-

rodegenerative disease, suggesting their involvement in disease pathology. Our preliminary

results with short-read sequencing suggest that re-investigation of the ATXN2 gene with

long-read sequencing technologies that allow a better resolution of repeat regions shows

promise for new insights into neurodegeneration.
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Chapter 1

Introduction

Genes play a big part in how the cells work in our bodies. One such critical gene is the

ATXN2 gene. This gene makes a protein that helps with several important jobs inside

our cells. It helps bring things into the cell (endocytosis), control how cells grow and stay

healthy, and make sure the cell creates the proteins it needs (ribosomal translation). It also

helps keep our cell's mitochondria powerhouses working properly.

Central to the exploration, we have the N-terminal region of ATXN2, which represents the

starting point or the beginning section of the protein. This N-terminal region contains a

polyglutamine tract (PolyQ) which refers to a portion of the protein consisting of a sequence

of several glutamine units stacked together akin to having a row of the same type of building

block repeated several times in a row. And in this case, there are usually between 14 to 31

of these, also termed residues. When this tract expands, it triggers a cascade of neurological

complications, with various disease manifestations [Lubieniecka et al., 2022]. A lot of times

these diseases vary according to the length of the expansion. The scienti�c community has

closely associated intermediate-length expansions of the PolyQ tract (27-34 repeats) with

heightened susceptibility to amyotrophic lateral sclerosis (ALS)[Chio et al., 2022]. Even fur-

ther along the spectrum, when the PolyQ tract expands beyond 34 repeats, it precipitates

the onset of spinocerebellar ataxia-2 (SCA2), characterized by a progressive loss of coordi-

nation and motor control.[Egorova and Bezprozvanny, 2019].

Various studies have demonstrated that this gene (ATXN2) can modify the toxicity of

TDP43, a protein closely linked with ALS pathology in a complex manner. All this research

and �ndings paved the way for an ongoing clinical trial (Clinical Trial NCT04494256) that

harnesses ATXN2 antisense oligonucleotides to lower ataxin-2 protein levels. This could

be a potential direction towards the treatment of individuals battling with ALS. However,

this clinical trial exclusively recruits patients with PolyQ expansions in the ATXN2 gene.

In contrast, we question whether other mutations in the ATXN2 gene, especially those

residing in exon 1 where the PolyQ region is nestled, in�uence protein function and disease

susceptibility similarly.
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To address this question, our clinical-genetics collaborators in the diagnostic genome-sequen-

cing facility at the Ruhr University, Bochum, evaluated rare genetic variants, including

single nucleotide variants (SNVs) and insertions/deletions (indels), within the �rst exon of

the ATXN2 gene. They aim to evaluate and understand rare genetic variants in the exon 1 of

ATXN2 and their potential contributions to the pathogenesis of neurodegenerative diseases.

Their study aims to contribute to understanding the genetic underpinnings of neurological

disorders, with potential implications for diagnosis and treatment.

Our collaborators collected data from patients with various diseases. They classi�ed the



Chapter 2

Data

This analysis focuses on the ATXN2 gene, speci�cally, the variants found in exon 1 of the

gene. We look at their association with neurodegenerative diseases. In this chapter, we

perform some exploratory analysis to understand the data provided to us by our clinical

genetics collaborators. We received the data from 358 people, comprising 134 cases with

neurodegenerative diseases, 161 cases with non-neurodegenerative diseases, and 63 unclas-

si�ed cases due to mixed symptoms. All of them had a normal number of polyglutamine

repeats in exon 1 of the ATXN2 gene.

The data was delivered in two Excel �les for the analysis. These were the< persons> data

�le and the < variants> data �le respectively. The < persons> data �le consists of the infor-

mation about the subjects including the disease they su�er from, its classi�cation (ND or

not), the clinical information, the variants in the exon 1 of the ATXN2 gene found in the

sample (if any), etc. The sample index column indicates the suspected diagnosis (disease).

As speci�ed by our collaborators, the abbreviations used for the sample index are as stated:

P-ALS = Amyotrophic lateral sclerosis, P-SPG = Spastic paraplegia, P-AX = Spinocere-

bellar ataxia paraplegia, P-AMY = Amyloidosis, P-SY = Syndromes/Global developmental

delay, P-MH = Malignant hyperthermia, P-MY = Myopathy, P-NP = Neuropathy, P-DIV

= Diverse/Rare/Unclassi�able, P-SW = Metabolic disease, P-DYT = Dystonia, P-BGW

= Connective tissue diseases, P-TM, = Cancer, P-HL = Hearing loss and EX = `Healthy'

individuals. The second data �le details the 19 di�erent variants of the ATXN2 gene under

study. Our collaborators refer to the publicly available gnomAD database to �nd the cor-

responding allele frequency of the variants. For 3 of the 19 variants, no allele frequencies

are reported in the gnomAD database. We call these variants `Questionable' in our analysis

and assess their relationship with disease status separately to check for potential bias from

removing them in the analysis.

The exploratory analysis aims to uncover data patterns and insights that may guide further

investigations into the relationship between the variants found in the exon 1 of the gene

and neurodegeneration (ND status). We use R programming for the exploratory analysis,
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including the readxl R package for reading Excel data and theggplot2 and dplyr libraries

for visualization and data manipulation.

2.1 The < persons> data

The data comprises 15 variables with 358 observations, representing the total number of

samples. To facilitate analysis, the data is pre-processed as follows. The `ND' (Neurodegen-

erative Disease) column is converted to a factor with levelsyes, no, and maybe where yes

corresponds to 1 implying the disease is ND,no corresponds to 0 implying the disease is

non-ND and maybecorresponds to 3 in the original data �le implying the disease couldn't

be classi�ed due to overlapping symptoms. Additionally, a new column, `Variant,' is created

to signify the presence of a genetic variant, with entries �yes� or �no� implying presence or

absence respectively. Another column, `Total_Variants,' is added to indicate the number of



Figure 2.1: Histogram of the age distribution of the sampled individuals.

Amongst the enrichment kits, Twist Comprehensive Exome Refseq vs2 is the most fre-

quently used (67 %), followed by Twist Comprehensive Exome plus Refseq (22 %), Twist

Mix (Comprehensive plus 2.0)(9 %), SureSelect All Exon v7(1.2 %) and Twist Comprehen-

sive Exome plus Refseq, Twist Exome 2.0, Twist Mix (Comprehensive plus 2.0) ( 0.8%).

According to our collaborators the enrichment-kit categories of �Twist Comprehensive Ex-

ome plus Refseq, Twist Exome 2.0, Twist Mix (Comprehensive plus 2.0)" and �Twist Mix

(Comprehensive plus 2.0)" should be merged whereas the �SureSelect All Exon v7" enrich-

ment kit is from a di�erent vendor and needs to be kept separate from the others. These

enrichment kits have long names, so we have used abbreviations throughout the analysis

to avoid complexity. The abbreviations used are as follows: Twist Comprehensive Exome

Refseq vs2 =TCER vs2, SureSelect All Exon v7 = Exon v7 , Twist Comprehensive Exome

plus Refseq = TCE (RefSeq), Twist Comprehensive Exome plus Refseq, Twist Exome 2.0,

Twist Mix (Comprehensive plus 2.0) = TCE(R, Ex, Mix) and Twist Mix (Comprehensive

plus 2.0)= T Mix.

2.1.2 Bivariate summaries

This section explores the associations between pairs of variables in the< persons> data

�le. These bivariate summaries and association tests provide valuable insights into the

relationships between various variables in the dataset, setting the stage for more in-depth

multivariate analyses.

Categorical � categorical variables

We constructed contingency tables for all the possible pairs of categorical variables fol-

lowed by association tests, but report selected results only. Further tables can be found in

Appendix 1.
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Sample Index Female Male
EX 4 4

P-ALS 49 44
P-AMY 0



TCER vs2 Exon v7 TCE(RefSeq) TCE(R,Ex,Mix) T Mix
EX 8 0 0 0 0

P-ALS 79 0 4



yes no maybe
EX 0 8 0

P-ALS 93 0 0
P-AMY 0 0 3
P-AX 22 0 0

P-BGW 0 20 0
P-DIV 0 13 2
P-DYT 0 0 6
P-HL 0 3 0
P-MH 0 4 0
P-MY 0 42 0
P-NP 0 0 52

P-SPG 19 0 0
P-SW 0 3 0
P-SY 0 58 0
P-TM 0 10 0

Table 2.3: Sample Index by ND status.

TCER vs2 Exon v7 TCE(RefSeq) TCE(R,Ex,Mix) T Mix
yes 99 2 17 2 14
no 99 2 49 0 11

maybe 42 0 13 1 7

Table 2.4: ND status by Enrichment kits.
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no yes
yes 112 22
no 151 10
maybe 58 5

Table 2.5: ND status by the presence of a variant.

no



Female Male
yes 71 63
no 80 81
maybe 26 37

Table 2.7: ND Status by sex.

Variable 1 Variable 2 p-value
ND status Sample Index 0.0001
ND status Enrichment Kits 0.01
ND status Presence of a Variant 0.02
ND status Presence of a Questionable Variant 0.54
ND status Sex 0.30

Table 2.8: Results of tests of association between ND status and di�erent variables.



TCER vs2 Exon v7 TCE(RefSeq) TCE(R,Ex,Mix) T Mix
no 221 0 67 3 30
yes 19 4 12 0 2

Table 2.9: Presence of a variant by enrichment kits.

Figure 2.4: Prediction of ND status `Yes' or `No' as a function of age by a generalized
additive-logistic model

Type Count
disruptive_inframe_deletion 5

disruptive_inframe_insertion, direct_tandem_duplication 14
frameshift_elongation 1
frameshift_truncation 15

frameshift_variant 18

Table 2.10: Univariate summary for the func variable
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Chapter 3

Analysis

In this chapter, we conduct a formal statistical analysis of the association between neu-

rodegenerative diseases and rare variants in exon 1 of the ATXN2 gene. As discussed in

the previous chapter, the data include clinical information from 358 individuals with nor-

mal PolyQ repeats. There were 134 cases of neurodegenerative disease, 161 cases of non-

neurodegenerative disease, and 63 cases with mixed symptoms where the disease could not

be categorized. The dataset containing information on the individuals has 15 variables,

including information on whether or not the patient has neurodegenerative disease (ND),

the dates of birth and of sampling, the biological sex, the enrichment kit used to sequence

the subject's DNA, and information on which of the observed rare variants is carried. The

dataset on variants has information about the 19 rare variants observed in the study such

as whether or not the variant is thought to be questionable, information on the variant

function, the population allele frequency, and the number of allelic copies examined in the

gnomAD public database (i.e. the denominator of the population allele frequency).

We use the SNP-set (Sequence) Kernel Association Test (SKAT), which tests the asso-

ciation between a set of SNPS/genes and continuous or dichotomous phenotypes using a

kernel regression framework [Wu et al., 2011]. The SKAT package in R ([Lee et al., 2023])

implements this test.

3.1 Preprocessing

After the data exploration, to shape our data for the SKAT package, we perform data

preprocessing steps, including:

ˆ Creating covariates matrices (X ) to account for demographic and non-genetic vari-

ables: Based on investigator input and the results of our exploratory analysis of the

data, potential confounding variables for the association between ND status and ge-

netic variants are the variables age, sex, and enrichment kit and so we include these

in X . As stated in Chapter 2, we merge certain enrichment kits as suggested by our
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collaborator. Speci�cally, two enrichment kits are combined, the `Twist Comprehen-

sive Exome plus Refseq, Twist Exome 2.0, Twist Mix (Comprehensive plus 2.0)' used

for 3 subjects and the `Twist Mix' used for 32 subjects. InX , they have been grouped

into the category coded as `TCE(R,Ex,Mix)'. We keep the enrichment kit `SureSelect

All Exon v7' coded as `Exon v7' (4 subjects) separate from the others as it is sourced

from a di�erent vendor. We refer to the most common enrichment kit `Twist Compre-

hensive Exome Refseq vs2' (240 subjects), coded as `TCER vs2' inX , as the baseline

category for enrichment kits in all our regression analyses.

ˆ Constructing a kinship matrix ( K ) to account for relatedness among subjects: The

data have some subjects that belong to the same families: 4 parent-child trios, 1 father-

son duo, and one sibling duo. We can account for kinship in the Gaussian regression

framework implemented in the SKAT package, so we create a kinship matrix for this

analysis.

ˆ Generating phenotype vector (Y ) to indicate the presence of ND diseases: We create

the phenotype or the response vector using the ND column from the< persons> data.

ˆ Constructing genotype matrix (Z ): Each row of the genotype matrix represents an

individual, and each of the 19 columns represents a rare variant in exon 1 of the

ATXN2 gene. The matrix was populated with values indicating the copy number of

each variant in each individual. Because these are rare variants, the copy number is

either 1 or 0.

ˆ Calculation of allele frequencies and imputation of missing values: We use the allele

frequencies of the 19 variants reported in the< variants> Excel data �le received

from our collaborators. The source of these frequencies is the gnomAD database.

Two missing allele frequencies were not found in the database which implied zero

frequencies were observed in gnomAD-contributed submissions. For our analysis, these

2 frequencies were imputed using the minimum frequency amongst the variants in our

study. The missing frequencies were set to be half the minimum frequency.

3.2 SKAT and SKAT-O

Rare-variant association testing plays a crucial role in deciphering the genetic basis of

complex traits, particularly with the advent of high-throughput sequencing technologies.

Traditional approaches like burden tests, which collapse rare variants into a single genetic

variable, su�er from limitations in power, especially in the presence of non-causal vari-

ants or when protective and deleterious variants coexist. In response to these challenges,

[Wu et al., 2011] introduced the Sequence Kernel Association Test (SKAT) in 2011. The

Sequence Kernel Association Test (SKAT) is a statistical method for rare-variant associa-

tion testing in sequencing data, particularly in genome-wide association studies (GWASs).

13



SKAT is a regression approach that can assess the association between genetic variants

(both common and rare) within a speci�c genomic region and a continuous or dichotomous



may have neurodegenerative disease, themaybe ND subjects, and keep only theyes ND

subjects as cases and theno ND subjects as controls.

3.4 Dataset retaining maybe



ˆ The coe�cient for sex (male) is not statistically signi�cant ( p = 0 :781), suggesting no

signi�cant di�erence in the prevalence of ND between genders.

ˆ `ekit.TCE' is negatively associated with neurodegenerative disease (p = 0 :01).



ˆ c.39_40del: � 0:020

To exclude these questionable variants from the analysis, we set the missing_cuto� pa-

rameter for the variants in the SKAT() function to be slightly below the lowest observed

frequency, speci�cally to 0.005. This strategic adjustment ensures the exclusion of question-

able variants.

Variant weights

Variant weights are important in the analysis framework. The idea is to upweight rare

variants relative to common variants, as population-genetics principles predict they are more

likely to be deleterious. We use the population allele frequency of each variant in the publicly

available gnomAD database to determine its corresponding weight in the SKAT analysis.

Leveraging data from gnomAD, the weights for 19 identi�ed variants are computed. Notably,

two variants in our data have no population allele frequencies recorded in gnomAD. We

impute the allele frequencies of these variants to be half the minimum gnomAD frequency

of the variants with gnomAD frequencies in our dataset.

Logistic regression

Transitioning towards statistical modeling, we apply logistic regression implemented in the

SKAT package to the sample of 352 unrelated subjects to assess the association between

rare variants in exon 1 of the ATXN2 gene and neurodegenerative diseases. A SKAT-O test

based on 100,000 bootstrap replicates under the null hypothesis of no genetic association

unveils a signi�cant genetic association (p = 0 :03) with ND status, following adjustments

for potential confounders such as age, sex, and enrichment kit.

Gaussian regression

Expanding the analysis, we apply the SKAT methodology for Gaussian regression to the

binary response to account for the familial relationships in the dataset. This time, the anal-

ysis encompasses 358 related subjects. Despite the incorrect assumption of a continuous

Gaussian response, the results remain consistent with those of the logistic regression, af-

�rming a signi�cant association ( p = 0 :02) between the rare variants in exon 1 of ATXN2

and ND status, after adjusting for age, sex, enrichment kit and familial relatedness.

3.5 Dataset removing maybe ND subjects

This section analyses the smaller dataset without subjects ofmaybeND status. The aim of

excluding the



We create a new phenotype vector,Y , for this smaller dataset. This vector separates subjects

based on their ND status, categorizing them into eitheryes or no groups. The maybeND

subjects are excluded from this vector, ensuring a more de�nitive classi�cation. This dataset

has 295 subjects with 63 subjects withmaybe ND status removed. We also set up the

covariates matrix (X ) and genotype matrix (Z ) for this dataset, excluding the persons in

the maybeND category.

3.5.1 Null models

We then establish a null model for logistic regression to serve as the foundation for sub-

sequent score tests in the SKAT-O framework. This model incorporates demographic and

clinical covariates only. For the smaller dataset excluding the ND subjects, We focus only

on logistic regression and do not establish a null model for Gaussian regression.

Logistic regression analysis

On a similar note, as we do for the previous larger dataset, we then use R'sglm() function to

�t a null model with logistic regression to be able to see the e�ect of the various non-genetic

covariates as listed below in Table 3.2.

Estimate Std. Error z value Pr(> jzj)
(Intercept) -2.985171 0.490243 -6.089 1.13e-09***

age 0.052634 0.008225 6.399 1.56e-10***
sexMale -0.188837 0.259431 -0.728 0.4667
ekit.TCE 0.674749 0.340547 1.981 0.0477*

ekit.TwistMix 0.182780 0.427939 0.427 0.6693
ekit.Exon -0.163016 1.298819 -0.126 0.9001

Table 3.2: E�ect estimates in the logistic regression with unrelated subjects

From the results above, we see that:

ˆ A signi�cant positive association is observed between age and the likelihood of neuro-

logical disorder (p < 0:001), indicating that older individuals are more likely to have

an ND disease.

ˆ The coe�cient for sex (male) is not statistically signi�cant (p = 0 :467), suggesting no

signi�cant di�erence in the prevalence of ND between genders.

ˆ Subjects processed with enrichment kits in the `ekit.TCE' category shows a sta-

tistically signi�cant association with ND (p = 0 :048). As already mentioned, the

`ekit.TCE' category corresponds to a combination of two enrichment kits in the origi-

nal < persons> Excel �le received from the investigator: `Twist Comprehensive Exome

plus Refseq, Twist Exome 2.0, Twist Mix (Comprehensive plus 2.0)' used for 3 subjects

and `Twist Mix (Comprehensive plus 2.0)' used for 32 subjects.

18



3.5.2 Alternative models

For the smaller dataset without the maybeND subjects, we apply only the logistic regression

analysis under the alternative hypothesis of genetic association. We do not consider Gaussian

regression under the alternative hypothesis.

Questionable variants

As described in the previous section, we calculated the sample frequencies of the three

questionable variants, c.42del, c.80_85del, and c.39_40del. The sample frequencies in the

smaller dataset were,

ˆ c:42del � 0:024

ˆ c:80_ 85del � 0:0067

ˆ c:39_ 40del � 0:02

To ensure the exclusion of the questionable variants,we set the missing cuto� parameter in

the SKAT() function slightly below the lowest observed frequency, speci�cally to 0.005. Note

that �ve variants are removed from the analysis, including two additional variants present

only in subjects with ND status maybe. These two additional removals are both deletions,

`c.54_58del' and `c.57_59del'.

Logistic regression analysis

We again apply logistic regression implemented in the SKAT package to the sample of 289

unrelated subjects to assess the association between rare variants in exon 1 of the ATXN2

gene and neurological disorder (ND) status. A SKAT-O test based on 150,000 bootstrap

replicates under the null hypothesis of no genetic association unveils genetic association

(p = 0 :005 � 0:008 ) with ND status, following adjustments for potentially confounding

variables such as age, sex, and enrichment kits.

3.6 Summary of results

Our analysis shows that the rare variants in exon 1 of the ATXN2 gene are associated with

ND status.

ˆ When subjects who aremaybe ND are included in the analysis (i.e. yes and maybe

versusno), rare variants in exon 1 of the ATXN2 gene are associated with ND status

(p = 0 :03) in a logistic regression analysis of ND status as a binary response. The

logistic regression analysis is based onn = 352 unrelated subjects and adjusts for age,

sex, and enrichment kit as potential confounding variables.
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ˆ Again, when subjects who aremaybeND are included (i.e. yes and maybeversusno),



Chapter 4

Conclusion

We start with an exploratory analysis to understand both the < persons> and < variants>

data �les that were shared with us. We begin our exploration with univariate summaries,

where we examine each variable's unique characteristics and distributions. Through tabular

summaries and visual aids such as histograms and box plots, we gain valuable insights into

the composition and structure of the data. We identify the key variables: sample index,

sex, ND status, enrichment kits, clinical information, age, and presence of a variant, under-

standing their frequencies, distributions, and potential relationships. We follow this with

bivariate summary tables giving us valuable insights into the relationships between various

variables in the < persons> data. We use exact association tests between various categori-

cal variables to gain insights about associated variables such as ND status and enrichment

kits, enrichment kits and the presence of variant, and ND status and the presence of a

variant. We use boxplots to visualize the age distribution with di�erent variables and test

the associations using an F-test based on a null distribution from parametric bootstrapping

with B = 1000 replicates. The bootstrap F-tests indicate a positive association between ND

status and age.

The data chapter lays the groundwork for more in-depth multivariate analyses and further

research into the interplay between variants and neurodegenerative diseases. The insights

gained in this chapter include the identi�cation of the enrichment kit as a potential con-

founding variable in the association between ND status and the presence of a variant since

it is signi�cantly associated with both ND status and the presence of a variant. Another

insight is that age is signi�cantly associated with ND status.

Moving on, the analysis chapter explores the association between neurodegenerative dis-

ease and rare variants in exon 1 of the ATXN2 gene by performing a formal statistical

analysis using the SKAT-O methodology [Lee et al., 2012]. We look at two datasets. The

�rst dataset retains the maybe ND subjects and considers them as cases along with the

yes ND subjects. The second dataset excludes themaybe ND subjects from the analysis

(it considers the no ND subjects as controls and theyes ND subjects as cases. Two null

21



models are �t for the �rst dataset with logistic and Gaussian regression respectively. R's

glm() function is used to estimate the e�ects of non-genetic covariates in the logistic re-

gression in the absence of genetic e�ects. The results of this logistic regression indicate a

positive association between age and neurodegenerative disease and a negative association

between the `ekit.TCE' enrichment-kit category and neurodegenerative disease. The alter-

native models are formulated removing the questionable variants below a threshold for their





Appendix A

Supplementary Tables

A.1 Univariate summary tables

Sample Index Count
EX 8

P-ALS 93
P-AMY 3
P-AX 22

P-BGW 20
P-DIV 15
P-DYT 6
P-HL 3
P-MH 4
P-MY 42
P-NP 52

P-SPG 19
P-SW 3
P-SY 58
P-TM 10

Sex Count
Female 177
Male 181

ND status Count



no yes
EX 8 0

P-ALS 80 13
P-AMY 2 1
P-AX 17 5

P-BGW 19 1
P-DIV 14 1
P-DYT 5 1
P-HL 3 0
P-MH 3 1
P-MY 41 1
P-NP 50 2

P-SPG 15 4
P-SW 1 2
P-SY 53 5
P-TM 10 0

A.3 R Scripts

An RMarkdown �le explaining the R functions described in this thesis along with the entire
code used can be found on GitHub at https://github.com/SFUStatgen/DJ
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no yes
EX 8 0

P-ALS 88 5
P-AMY 3 0
P-AX 19 3

P-BGW 19 1
P-DIV 14 1
P-DYT 6 0
P-HL 3 0
P-MH 2 2
P-MY 37 5
P-NP 51 1

P-SPG 19 0
P-SW 3 0
P-SY 54 4
P-TM 10 0

TCER vs2 Exon v7 TCE(RefSeq) TCE(R,Ex,Mix) T Mix
Female 121 2 37 2 15
Male 119 2 42 1 17
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