
On the calculation of risk measures for
variable annuities with guaranteed

benefits
by

Lei Chen

B.Sc., University of Calgary, 2020

Project Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
Department of Statistics and Actuarial Science

Faculty of Science

© Lei Chen 2022
SIMON FRASER UNIVERSITY

Summer 2022

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.



Declaration of Committee

Name: Lei Chen

Degree: Master of Science

Thesis title: On the calculation of risk measures for variable
annuities with guaranteed benefits

Committee: Chair: Joan Hu
Professor, Statistics and Actuarial Science

Yi Lu
Supervisor
Professor, Statistics and Actuarial Science

Jean-François Bégin
Committee Member
Assistant Professor, Statistics and Actuarial Science

Cary Chi-Liang Tsai
Examiner
Professor, Statistics and Actuarial Science

ii



Abstract

With the development of the life insurance industry, different types of life insurance prod-
ucts, in addition to the traditional ones, are being developed. A common and well-known life
insurance product is the variable annuity with different types of guaranteed benefit riders,
which provides policyholders a high rate of investment return with downside risk protec-
tions. Two typical distortion risk measures, VaR (value at risk) and CTE (conditional tail
expectation), are widely used to manage insurers’ future liabilities to avoid the potential of
insolvency. In this project, we consider variable annuities with certain types of guaranteed
benefits and various asset price processes, and focus on the calculation of the two risk mea-
sures of insurers’ net and gross liabilities at the maturity date. Specifically, we consider two
types of guaranteed benefit riders, the guaranteed minimum death benefit (GMDB) and the
guaranteed minimum maturity benefit (GMMB), and assume that the logarithm of under-
lying asset returns follows a Cauchy or a skew-normal distribution. Analytical expressions
of VaR and CTE for insurers’ future liabilities are obtained, and numerical calculation al-
gorithms are proposed. Comparisons of the calculated risk measure results with that under
the normal distribution are also presented.

Keywords: Analytical expressions; Risk measures; Variable annuity; Cauchy distribution;
Skew-normal distribution.
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Chapter 1

Introduction

1.1 Overview

In recent years, many types of equity-linked life insurance and annuity products have been
developed. One common type of equity-linked life insurance product is the variable annu-
ity contract with or without guaranteed benefits. In the U.K. and most of the European
countries, variable annuity contracts (commonly used terminology in the U.S.) are called
equity-linked policies and, in Canada, they are known as segregated fund policies. In gen-
eral, variable annuities have a benefit linked to the performance of an investment fund.
There are many types of guaranteed benefits associated with variable annuity contracts; we
call them rider (or riders if multiple types of guaranteed benefits are applied).

For a variable annuity with guaranteed benefit riders, the policyholder pays the insurer
a single premium at the beginning of the policy term or periodic premiums during the
policy term. The insurer invests the initial premium and follow-up premiums in an asset



during the policy term until they withdraw their money as income. Variable annuities

are not absolutely guaranteed with respect to their investment growth; while they allow

for huge gains, they also face potential losses. Variable annuities with guaranteed bene�ts

provide policyholders protections against in�ation risk and market volatility; for example, a

variable annuity with a guaranteed lifetime withdrawal bene�t provides the policyholder a

guaranteed income for life even if the market remains unstable or drops precipitously. Hence,

variable annuities with guaranteed bene�ts become one of the ideal choices for investors to

receive higher expected investment returns with downside �nancial market protection.

From the insurers' point of view, it is essential to manage and monitor the fund per-



distributional models for modeling asset returns in variable annuities with guaranteed bene-
fits. The return models that we consider in this project are the Cauchy distribution and the
skew-normal distribution, which could capture the skewness and the heavy tails presented
in the data. We follow similar techniques as in Feng and Volkmer (2012) to derive analytical
expressions of VaR and CTE for gross liabilities of variable annuities with either GMMB
or GMDB rider. We present calculation algorithms based on Monte Carlo simulation for
calculating both VaR and CTE risk measures for net liabilities of variable annuities with
either rider. The S&P 500 stock index historical data are fitted to the Cauchy and skew-
normal models, and numerical values of risk measures under these asset price models are
presented. The results for the normal model are also included for comparison purposes.

1.3 Outline

The remainder of this project report is organized as follows. Chapter 2 provides a literature
review on the modeling of stock returns, related studies on the pricing and valuation of
variable annuities with guaranteed benefits, and risk measure calculation methods. Chapter
3 presents details of three asset models and introduces the concept of future liabilities for a
variable annuity with GMMB or GMDB rider. Analytical expressions for gross liabilities are
derived, and calculation algorithms for net liabilities are presented under the three asset
models. Chapter 4 shows the statistical analysis on the S&P 500 returns data, and the
numerical risk measure results under the three fitted asset models. The conclusion of this
project and possible further research on related topics are provided in Chapter 5.
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Chapter 2

Literature review

In this chapter, we provide a literature review on three topics. We first review the modeling
techniques for asset prices, mainly focusing on the application of the lognormal model or



stock returns. Thereafter, many studies in financial engineering and actuarial science fields
considered other desirable distributions as alternatives to the normal distribution. For ex-
ample, Eling (2014) fits the stock returns data to some skewed distribution models such
as skew-normal and skew-student t distributions; the analysis shows that such skewed dis-
tribution models are promising for modeling returns. Choi and Yoon (2020) present model
comparison study on several stock returns data by using twelve different distributions, in-
cluding fat-tail distributions such as the Cauchy distribution, and skewed distributions such
as the skew-normal and skew-student t distributions. More recently, Mahdizadeh and Za-
manzade (2019) fit the Cauchy distribution to the stock returns data and proposes six new
goodness-of-fit tests to show that fat-tail distributions like the Cauchy fit data better than
the normal distribution.

2.2 Variable annuity with guaranteed benefits

A variable annuity, also called an equity-linked insurance contract, is a life insurance product
that has been common worldwide since 1960s. Hardy (2003) provides a comprehensive guide
and detailed information on life insurance products with investment guarantees, including
their modeling and risk management. Major benefit riders introduced in this book are guar-
anteed minimum maturity benefit (GMMB), guaranteed minimum death benefit (GMDB),
guaranteed minimum accumulation benefit (GMAB), guaranteed minimum surrender bene-
fit (GMSB), and guaranteed minimum income/withdrawal benefit (GMIB/GMWB). These
guaranteed benefit riders are designed to provide policyholders with downside risk protec-
tion when markets are in turmoil. There are many studies on different aspects of variable



equation with jumps and obtain numerical results by using the back-propagation neural

network. Bacinello et al. (2011) present a unifying approach for the valuation of variable

annuities with guaranteed bene�t riders. The contract values are computed and compared

under di�erent valuation approaches using the ordinary and least squares Monte Carlo sim-

ulation methods. Huang et al. (2022) develop a computationally e�cient approach to value



expressions for gross liabilities of the variable annuity with either a GMMB rider or a
GMDB rider and use Monte Carlo simulation to calculate the two risk measures based on
their corresponding net liabilities.
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Chapter 3

Future liabilities and Risk
measures

In this chapter, we first introduce two types of insurers’ future liabilities for variable an-
nuities with either a GMMB or a GMDB rider. The two types of future liabilities are the
gross liability and net liability. We then consider two risk measures, VaR and CTE, and use
them to evaluate risks with respect to their future liabilities with guaranteed benefit riders
under three equity models (normal, Cauchy, and skew-normal).

We first introduce the notation we use in this study.

ˆ G — the guaranteed level of variable annuity. It represents the lowest value that the
policyholder will receive at the end of the policy term.

ˆ T



ˆ eL 0
n — the present value of insurers’ net liability for GMMB rider at time 0.

ˆ dL 0
g — the present value of insurers’ gross liability for GMDB rider at time 0.

ˆ dL 0
n — the present value of insurers’ net liability for GMDB rider at time 0.

ˆ t px — the survival probability for a life age x who will survive t years.

ˆ � x+ t — the force of mortality for a life age x + t.

ˆ � x — the future lifetime for a life age x.

The rest of this chapter is organized as follows. Two risk measures for gross and net
liabilities are introduced in details in Section 3.1. Section 3.2 introduces three models for
the underlying equity, and then presents analytical expressions of risk measures for gross li-
abilities under the three different models. Section 3.3 provides general analytical expressions
and numerical algorithms for computing and approximating net liability risk measures.

3.1 Risk measures and future liabilities

As in Feng and Volkmer (2012), we study the two most popular and widely applied risk
measures: VaR and CTE. VaR is a quantile risk measure that gives the quantile of a random
variable at some specific significance level � (0 � � � 1). Given the significance level � ,
VaR represents the loss amount that will not be exceeded with probability � . It is helpful
for investors to measure their potential losses and manage their risk capital during the
investment period. CTE is the conditional expectation of a random variable given that the
random variable is greater than its VaR at a given significance level. CTE helps investors
to estimate the expected value of losses given that the losses exceed the given VaR. CTE is
a coherent risk measure, while VaR is not because it is not subadditive.

3.1.1 GMMB future liabilities



Before we formulate the net liabilities, we introduce an additional quantity called the
management expense at time t and denoted by M t . The management expense represents
the management fee that is charged continuously by the insurer during the policy term.



Similar to the net liability defined for the GMMB rider case, the net liability for GMDB
rider is given by

dL 0
n = e� r� x (e�� x G � F� x )+ I f � x � T g �

Z � x ^ T

0
e� rs M sds: (3.5)

3.1.3 Two risk measures for guaranteed riders

We discuss the two risk measures, VaR and CTE, for both the GMMB and GMDB riders
in this subsection. The quantile risk measure with a given significance level � , denoted by
V� , is define as

V� � inf f x : P[L 0 � x] � � g; (3.6)

where L 0 is a general form of insurer’s loss, representing the net present value of insurer’s
future liability at time 0 in this project. Typical values for � are 95%or 99%(Hardy, 2006).
The value of V� estimates the amount that with probability � , the present value of insurer’s
future liability will not be exceeded.

The conditional tail expectation risk measure with a given significance level � , denoted
by CTE� , is defined as

CTE� � E[L 0jL 0 > V� ]: (3.7)

Typical values of � for CTE� are 90%, 95%, or 99% (Hardy, 2006). The value of CTE�

estimates the amount that represents the average amount of insurer’s future liabilities when
they exceed V� .

For insurance companies, it is essential to analyze both gross and net liabilities. Gross
liabilities give an insurer a good sense to manage liability risks because gross liabilities
do not include any future negative cash flow (management fees), while the net liability
includes both the future positive cash flow (benefit payout) and the future negative cash
flow (management fees). The latter helps the insurer manage both liability risks and asset
risks. In this project, we calculate the two risk measures for gross liabilities by using the
analytical formulas we derive, and we estimate the two risk measures for net liabilities based
on Monte Carlo simulation.

3.2 Analytical results for gross liabilities

We have introduced the definitions of gross liabilities, net liabilities, and two risk measures
for variable annuities with either a GMMB rider or a GMDB rider in Section 3.1. In this
section, we first present three models for the asset price process. We then review the an-
alytical results for gross liability risk measures based on the normal model used in Feng
and Volkmer (2012) and provide analytical expressions for the gross liability risk measures
based on the Cauchy and skew-normal models considered in this project. In the last section
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of this chapter, we provide algorithms for calculating risk measures of net liabilities by using
the Cauchy model as an example.

3.2.1 Underlying equity models

As in Feng and Volkmer (2012), we assume that the account value (market value) of a
variable annuity at time t, Ft , is described by

Ft = F0
St

S0
e� mt ; 0 � t � T; (3.8)

where St is the market value of the underlying asset at time t, F0 is the initial payment



and its cumulative distribution function (cdf) is given by

�( x; �; � ) =
1
2

�
1 + erf

�
x � �

�
p

2

��
; �1 < x < 1 ; (3.11)

where erf(x) is the error function given by

erf(x) =
2

p
�

Z x

0
e� t2

dt:

Assume that the returns in the underlying equity fund from time t � 1 to time t, for
t 2 N+ , are identical and independent distributed (i.i.d.). We now first write ln(St =S0)

as
ln

�
St

S0

�
= ln

�
St

St � 1

�
+ ln

�
St � 1

St � 2

�
+ � � � + ln

�
S1

S0

�
:

| {z }
independent and identically distributed

(3.12)

Notice that the terms on the right-hand-side of (3.12) are i.i.d. and follow Norm(�; � ).
Applying the properties of the normal distribution, we then have that

ln
�

St

S0

�
� Norm

�
�t; �

p
t
�

; t > 0;

or
St

S0
� Lognorm

�
�t; �

p
t
�

; t > 0:

ˆ



Note that the Cauchy distribution is also symmetric similar to the normal one, but it
does not have a mean, a variance or higher moments. The latter characteristic implies
that the Cauchy distribution has a fat tail.

Assume that ln(S1=S0); ln(S2=S1); : : : ; are i.i.d. and follow Cauchy(�; � ). By applying
the properties of the Cauchy distribution, we can similarly get that

ln
�

St

S0

�
� Cauchy(�t; �t ); t > 0;

or
St

S0
� Log-Cauchy(�t; �t ); t > 0:

Similar to (3.9), in this case we can write the underlying asset price process f St gt � 0

as
St = S0e�t + �C t ; t > 0;

where f Ct gt � 0



Notice that the skew-normal distribution is an asymmetric distribution. The skew-
normal distribution becomes normal distribution when ! = 0 , and it becomes half
normal distribution when ! = �1 or 1 .

Assume that ln(S1=S0); ln(S2=S1); : : : ; are i.i.d. and follow skew-norm(�; �; ! ) distri-
bution. By applying the properties of the skew-normal distribution, we can similarly
get

ln
�

St

S0

�
� skew-norm(�t; �

p
t; ! ); t > 0;

or
St

S0
� Log-skew-norm(�t; �

p
t; ! ); t > 0:

Similar to (3.9), the underlying asset price process f St gt � 0 can be written as

St = S0e�t + �M t ; t > 0;

where f M t gt � 0 is a skew-normal process with location parameter 0, scale parameter
p

t, and shape parameter ! ; that is, for a fixed t, M t � skew-norm(0;
p

t; ! ).

3.2.2 Risk measures for variable annuities with a GMMB rider

Before we proceed to the analytical results, we first determine the probability that positive
liabilities occur. The insurer only considers the situation where there is a chance for positive
future liabilities because negative future liability represents a profit. Considering the gross
liability for a variable annuity with a GMMB rider, the probability that no guarantee
payment will be made at maturity is given by

� e = 1 � P[G � FT ; � x > T ] :

When calculating VaR and CTE risk measures, the significance level � should be chosen
to be larger than � e in the GMMB rider situation. By using (3.8) and a



Similarly, in the Cauchy model case, the value of � e is given by

� e = 1



Proposition 3.2. For the three equity return models described in Section 3.2.1, we have
the following results for the conditional tail expectation CTE� , given that � > � e, and for
GMMB gross liabilities. Note that � e for corresponding normal, Cauchy, and skew-normal
models are respectively given in (3.17), (3.18) and (3.19).

(1) Under the normal model, we have

CTE� = e� rT G � T px
F0

1 � �
expf (� � r � m)T + � 2T=2g�( Z � ; �

p
T ; 1);

where z� is the 100� % percentile of the standard normal distribution with � = (1 -
� )/T px , and � is the cdf of the standard normal random variable.

(2) Under the Cauchy model, we have

CTE� = e� rT G � T px
F0

1 � �

Z ln( a)

�1
ey � f C (y; (� � r � m)T; �T )dy; (3.21)

where a = (e� rT G� V� )=F0, and f C is the pdf of the Cauchy distribution with location
parameter (� � r � m)T and scale parameter �T .

(3) Under the skew-normal model, we have

CTE� = e� rT G � T px
F0

1 � �

Z ln( a)

�1
ey � gS(y; (� � r � m)T; �

p
T ; ! )dy;

where a = (e� rT G � V� )=F0, and gS is the pdf of the skew-normal distribution with
location parameter (� � r � m)T , scale parameter �

p

� e�



in which t px � x+ t is the density function of the future lifetime of (x). Using (3.8), we can
further write � d as



(2) Under the Cauchy model, we have

1 � � =
Z T

0
t px � x+ t FC

 

ln
e(� � r )t G � V �

F0
; (� � r � m)t; �t

!

dt; (3.25)

where FC is the cdf of the Cauchy distribution with corresponding parameters given

in the brackets.

(3) Under the skew-normal model, we have

1 � � =
Z T

0
t px � x+ t GS

 

ln
e(� � r )t G � V �

F0
; (� � r � m)t; �

p
t; !

!

dt;

where GS is the cdf of the skew-normal distribution with corresponding parameters

given in the brackets.

Proof. See Appendix A.3.
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(3) Under the skew-normal model, we have
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=F0, and gS and GS are the pdf and cdf of the skew-

normal distribution with location parameter (� � r � m)t, scale parameter �
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t, and
shape parameter ! , respectively.

Proof. See Appendix A.4.

3.2.4 Calculation notes for gross liabilities





Now, given that � > � e, the expression for V� based on net liabilities of a GMMB rider,
eL 0

n , can be obtained from the following equation:
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where function P is given in (3.27) and at a significance level of � .
Note that under the normal model, an explicit expression of P(T; x) is presented in Feng

and Volkmer (2012) (see Equation (3.5) in Proposition 3.3). However, when ST =S0 follows
a Cauchy or skew-normal model, the explicit expression for P(T; x) is not available. We
propose the Monte Carlo simulation algorithm below for computing (i.e., approximating)
� e and V� .

Let
eYs = e� (r + m)s �

Ss

S0
; 0 � s � T: (3.29)

Note that the integral
RT

0 eYs ds is defined path by path. For a fixed sample path of f Ysgs� 0,
the integral

RT
0 eYs ds is a continuous function, so the integral can be calculated or approxi-

mated over the interval [0; T]. Assume a constant time increment of a unit with in total n

units in a year (so that these are nT time units in T complete years), and then for a fixed
sample path of f Ysgs� 0, we have
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Step 5: Compute the estimated V� by

bV� =
1

M

MX

j =1

V(j )
� :

We now present the steps for calculating the conditional tail expectation CTE� for the
GMMB net liabilities. Given that � > � e, and by Equation (3.3), the expression of CTE for
net liabilities of GMMB, eL 0

n , is given by
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at a significance level � .
By using (3.8) and the definition of eYs given in (3.29), CTE� can be written as
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We further let
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Then, using (3.28), we can obtain the following expression for CTE� :
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and CTE� can be approximated by
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Below are the detailed steps.

Step 1: Simulate N sets of
�
eYk

	 nT
k=1 and calculate corresponding N realizations of Q, Q1; Q2; : : : ; QN ,

based on the Cauchy model.

Step 2: Follow Steps 2–3 in Algorithm 2 to obtain V
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where function P is given in Equation (3.27) and me is replaced bymd. Then, � d for the

GMDB net liabilities can be expressed as
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Similarly, given that � > � d, V � for net liabilities of GMDB, dL 0
n , can be obtained from

the following equation:
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Algorithm 4: approximate � d

Based on the approximation formula of Equation (3.37), � d can be approximated by
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Below are the detailed steps.

Step 1:



Step 6: Compute the estimated V� by

bV� =
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j =1
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We now present the steps for calculating the conditional tail expectation CTE� for the



Using the same approximation for P(k; x) as in (3.37), CTE� can be approximated by
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Below are the detailed steps.
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and then calculate CTE(1)
� using (3.41).
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Chapter 4

Numerical illustrations

4.1 Data and Models

In this section, we �rst introduce the data and perform a preliminary data analysis by

looking at the histograms, time series plots, and autocorrelation function plot of data. In

Section 4.1.2, we present the maximum likelihood estimation method for estimating the

model parameters for normal, Cauchy, and skew-normal models, and then determine the

better-�t distributions based on some model selection criteria. In Section 4.1.3, we provide a

graphical comparison of theoretical and the empirical distributions and examine simulated

projections.

4.1.1 Data

In this project, we use the S&P 500 weekly stock index prices1 over the past two decades,

between the week of February6th 2000 and the week of January26th 2020, as our historical

data. We calculate the returns by taking the logarithm of the ratio of two consecutive stock

index prices. The time series plot of historical weekly stock index prices are shown in Figure

4.1.

The historical weekly returns are plotted in Figure 4.2 and the relevant statistics of

this data are shown in Table 4.1. From Table 4.1, we see that the skewness and kurtosis of

historical returns data are � 0:8928359and 10:42228, respectively. The empirical skewness

of a data is a measure of asymmetry of the empirical distribution. The data is symmetrically

distributed if its empirical skewness has a value of 0, and the empirical distribution is left-

skewed (right-skewed) if its empirical skewness has a negative (positive) value. The empirical

kurtosis of a data is a measure that assesses whether the data are heavy-tailed or light-tailed

relative to a normal distribution. The data is normally distributed if its empirical excess

kurtosis has a value of 0, and the data has heavier (lighter) tails than normal if its empirical

excess kurtosis has a positive (negative) value. Based on the skewness and excess kurtosis

1https://ca.finance.yahoo.com/
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Figure 4.1: Time series plot of S&P 500 weekly prices.

Figure 4.2: Time series plot of S&P 500 weekly returns.

obtained from our historical returns data, we can conclude that the empirical distribution
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of historical returns is left-skewed and has heavy tails. This can also be observed from the
histogram of historical weekly returns based on the stock index prices shown in Figure 4.3.

Table 4.1: Statistics for historical S&P500 weekly returns.

Min Max Median Mean Variance Skewness Kurtosis
-0.2008375 0.113559 0.0020705 0.0008098 0.0005717 -0.8928359 10.42228

Figure 4.3: Histogram of S&P 500 weekly returns.

In this study, we assume that the returns are independent and identically distributed. To
test the independence assumption of our returns data, we plot the autocorrelation function
(ACF) of our historical weekly data in Figure 4.4. In time series studies, the autocorrelation
function measures the correlation of a time series with itself after lagging. It can be observed
from Figure 4.4 that the data have correlation of 1 at lag 0. This means that the data is
perfectly correlated with respect to itself. The dashed blue lines represent a confidence
interval of zero correlations. As we can see from Figure 4.4 and for any positive lag levels,
the values of sample autocorrelation function are all within the dashed blue lines, implying
that the historical lagged returns are not correlated.

In addition to the ACF plot, both Ljung-Box and Box-Pierce tests are also commonly
used to verify the independence assumption of time series data. The Ljung-Box test, pro-
posed by Ljung and Box (1978), examines whether a time series contains autocorrelation.
The Box-Pierce test, proposed by Box and Pierce (1970), is a simplified version of Ljung-Box
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test. Both tests set up the null hypothesis in the same way; the null hypothesis assumes that
the time series data are independently distributed. We perform both tests for our returns
data at a lag level of 1 and their p values are obtained using the stats2 package in R. The
p values are 0:02677and 0:02699, respectively. Based on these p values, we fail to reject the
null hypothesis of both Ljung-Box and Box-Pierce tests at 1% significance level. Hence, the
independence assumption should hold for our historical returns data.

Figure 4.4: Sample ACF of S&P 500 weekly returns.

4.1.2 Models and estimations

Recall that the asset price at time t (0 � t � T) is denoted as St , and the logarithm of the
quotient of two consecutive stock prices at time t � 1 and t, also known as equity return at
time t, is denoted by ln(St =St � 1).

Let X i = ln(Si =Si � 1), i = 0,1,. . . ,n. We first consider the lognormal model. In this
case, the X i s are assumed to be independent and normally distributed with mean � and
standard deviation � . The pdf and cdf of this normal distribution are given by (3.10) and
(3.11), respectively.

In this project, we use the maximum likelihood estimation (MLE) method to estimate
the parameters for the three distributions we consider. In the normal distribution case,
the explicit expressions of the MLE of the parameters can be easily obtained by solving a

2https://www.rdocumentation.org/packages/stats/versions/3.6.2
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system of equations, called estimating equations. The likelihood function based on a sample
of observations x1; x2; : : : ; xn , L(�; � 2; x1; x2; : : : ; xn ), is given by
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1
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@�
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and the log-likelihood function can be expressed as
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By taking the first derivative of the log-likelihood function with respect to parameter � and
� 2, respectively, and setting them equal to 0, we have the following system of estimating
equations: 8
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Table 4.2: The estimated parameters and maximum log-likelihood.

Model Parameters Log-likelihood
Normal � = 0.00080985 � = 0.02390084 2412.129
Cauchy � = 0.00284392 � = 0.01103033 2422.943

Skew-normal � = 0.00048935 � = 0.02363083 ! = -0.26741422 2431.782

Table 4.2 shows the values of the estimated parameters for the three models. We notice
that both Cauchy and skew-normal models have larger log-likelihood values at the estimated
parameters than that of the normal model case. Based on this criterion, both Cauchy and
skew-normal models fit our historical data better than the normal one. To determine which
model fits the data better out of models with different numbers of parameters, we use the
Akaike information criterion (Akaike, 1973) and Bayesian information criterion (Schwarz,
1978).

Definition 4.1. The Akaike information criterion (AIC) is a measure of goodness of fit
defined as

AIC = 2k � 2`(�̂ );

where k is the number of estimated parameters, �̂ represents a set of estimated parameters
in the model, and ` is the log-likelihood function.

Definition 4.2. The Bayesian information criterion (BIC) is a measure of goodness of fit
defined as

BIC = k � ln(n) � 2`(�̂ );

where n is the number of observations.

Both AIC and BIC can help to compare the goodness-of-fit for models with different
numbers of parameters. A smaller AIC or BIC indicates a better-fit model within all the
candidate models. We present the AIC and BIC values for the three models in Table 4.3.

Table 4.3: The AIC and BIC values of models.

Model Number of parameters Log-likelihood AIC BIC
Normal 2 2412.129 -4820.257 -4810.360
Cauchy 2 2422.943 -4841.885 -4831.987

Skew-normal 3 2431.782 -4857.564 -4842.717

According to the AIC and BIC values in Table 4.3, the skew-normal model has the
lowest AIC and BIC values. Hence, we can conclude that the skew-normal distribution is
the best-fit model for our S&P 500 historical returns data.
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4.1.3 Graphical analysis of �tted models

In this subsection, we use several graphical tools to help understand the relationship between

the �tted theoretical distributions and the empirical distribution. The useful plots include



Figure 4.6: CDF plot of theoretical and empirical distributions.

In Figure 4.7, we show the quantiles of the fitted three distributions against the empirical
distribution on the left, and the cumulative probabilities of the fitted three distributions
against the empirical distribution on the right. We observe from both the Q-Q plots and
P-P plots that the Cauchy distribution shows a good fit for the values around 0 in the
middle part of the empirical distribution. The skew-normal Q-Q plot illustrates again that
the empirical distribution is negatively skewed.

In Figure 4.8, we display S&P 500 projections for the next 10 years based on the fitted
normal, Cauchy, and skew-normal models on the left, and corresponding return projections
for the next 10 years on the right. Note that the lower and upper quantiles of price pro-
jections showed in the figure are 25% and 75% for the Cauchy model, and 5% and 95% for
the normal and skew-normal models. The projections of the stock prices under the Cauchy
model show an extremely wide price range compared to that under the normal and skew-
normal models. Moreover, the extremes of the projected prices under the Cauchy model
become more extreme to the upside. The reason for this phenomenon is that the Cauchy
distribution is heavy-tailed. As expected, the prediction of returns under the Cauchy and
normal models are symmetric, while that under the skew-normal model shows negative
skewness. Because of the negative skewness of our fitted skew-normal model, the prediction
shows a downward trend of stock prices. In addition, the median of projected returns is
below 0 (under the green horizontal line) in the skew-normal model, which demonstrates
the downward trend of its projected stock prices.
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Figure 4.7: Q-Q plots and P-P plots.
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Figure 4.8: Projections versus historical data.
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4.2 Risk measure results and analysis

In this section, we calculate and compare the VaR and CTE for the insurer’s future liabilities
(gross and net) with respect to GMMB and GMDB riders based on three fitted return





Table 4.5 shows the calculated risk measure results relative to the initial fund value F0 for
the GMMB gross liabilities with different predetermined guaranteed levels and different risk
levels for normal, Cauchy, and skew-normal underlying equity models. From the insurer’s
points of view, only the positive liabilities are meaningful in real life applications. The values
with an asterisk mark in Table 4.5 imply negative risk measures for gross liabilities. For
example, with the guaranteed level of 75% and the normal model, the insurer has a risk
capital of 0% of the initial fund, which indicates that no capital is exposed to risk at levels
of 80% and 90%. In this case, such products with corresponding risk levels and guaranteed
levels could be profitable.

Table 4.5: The numerical results of GMMB gross liabilities.

Models
Guaranteed level (%) Risk Measures Normal Cauchy Skew-normal

75

V80%=F0 0* 0.48871 0.00056
CTE80%=F0 0.01617 0.50137 0.12680
V90%=F0 0* 0.50273 0.11422

CTE90%=F0 0.11071 0.50274 0.19775
V95%=F0 0.09601 0.50274 0.18644

CTE95%=F0 0.17584 0.50274 0.29438

100

V80%=F0 0.01490 0.65629 0.16814
CTE80%=F0 0.18375 0.66895 0.29438
V90%=F0 0.16744 0.67031 0.28179

CTE90%=F0 0.27829 0.67032 0.36533
V95%=F0 0.26359 0.67032 0.35402

CTE95%=F0 0.34342 0.67032 0.41457

120

V80%=F0 0.14896 0.79035 0.30221
CTE80%=F0 0.31781 0.80301 0.42844
V90%=F0 0.30150 0.80437 0.41586

CTE90%=F0 0.41235 0.80438 0.49940
V95%=F0 0.39765 0.80438 0.48808

CTE95%=F0 0.47749 0.80438 0.54863

Based on the values showed in Table 4.5, we notice that all the risk measures relative
to the initial fund value F0 for the Cauchy model are significantly greater than that of the
normal and skew-normal models. For the guaranteed level at 120% of the initial premium,
around 80% of the insurer’s capital is exposed. This reminds that the Cauchy model should
be used with a great caution. Because the Cauchy distribution features fat-tails compared
to the normal and skew-normal distributions, it is more likely to incur enormous future
losses if the Cauchy distribution is used.

Table 4.6 shows the calculated risk measure results relative to F0 for GMMB net lia-
bilities with different predetermined guaranteed levels and different risk levels for normal,
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Cauchy, and skew-normal models. Because the net liability is the gross liability net of the
margin offset, we expect the risk measure values in Table 4.6 to be all slightly less than
the corresponding ones showed in Table 4.5. However, this holds only for the normal and
Cauchy models. By comparing the risk measure values in both Tables 4.5 and 4.6 for the
skew-normal distribution, we notice that the net liability risk measure values are larger than
those for the gross liability. This is because the fitted skew-normal distribution is negatively
(left) skewed, which would cause the simulated future paths of underlying equity prices have
a downward trend.

Table 4.6: The numerical results of GMMB net liabilities.

Models
Guaranteed level (%) Risk Measures Normal Cauchy Skew-normal

75

V80%=F0 0* 0.39717 0.08511
CTE80%=F0 0* 0.47745 0.18810
V90%=F0 0* 0.48843 0.17772

CTE90%=F0 0.08851 0.49754 0.24529
V95%=F0 0.07433 0.49820 0.23647

CTE95%=F0 0.15524 0.50115 0.28471

100

V80%=F0 0* 0.56594 0.25342
CTE80%=F0 0.15964 0.64497 0.35547
V90%=F0 0.14247 0.65607 0.34543

CTE90%=F0 0.25645 0.66513 0.41288
V95%=F0 0.24306 0.66580 0.40355

CTE95%=F0 0.32256 0.66874 0.45279

120

V80%=F0 0.12151 0.70024 0.38716
CTE80%=F0 0.29329 0.77935 0.48946
V90%=F0 0.27647 0.79002 0.47897

CTE90%=F0 0.39037 0.79918 0.54687
V95%=F0 0.37543 0.79983 0.53804

CTE95%=F0 0.45694 0.80281 0.58747

4.2.3 Risk measure results for GMDB

The GMDB rider provides the policyholder a death benefit during the policy term. The
death benefit is equal to the larger value between the guaranteed amount accumulated at a
roll-up rate and the separate account fund value at the time of death of the policyholder. In
this numerical example, we assume that the death benefit is payable at the end of the year
of death, and we calculate the risk measures for the insurer’s future gross liabilities based
on the propositions presented in Section 3.2.3, and the risk measures for the net liabilities
based on the algorithms presented in Section 3.3.2. Below is the valuation basis used for
calculations for the GMDB rider:
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From the insurer’s point of view, the risk measures for net liabilities are more meaningful
than that for gross liabilities. Table 4.8 shows the calculated risk measure values relative
to F0 for net GMDB liabilities. The values calculated for net GMDB liabilities are smaller
than those for the gross GMDB liabilities for the normal and Cauchy models only. We also
observe that, with either a GMMB rider or a GMDB rider, the Cauchy model returns the
largest risk measure relative to the initial fund value F0 due to the fat tails of the Cauchy
distribution, while the skew-normal model returns larger results than normal model. The
latter is because the estimated location parameter of the skew-normal model is smaller than
the estimated location parameter of the normal model. In addition, the estimated negative
shape parameter corresponding to the negative (left) skewness for the skew-normal model
implies a fat left tail in distribution compared to the normal model, which results in larger
risk measure values in this case.

Table 4.8: The numerical results of GMDB net liabilities.

Models
Guaranteed level (%) Risk Measures Normal Cauchy Skew-normal

75

V80%=F0 0* 0* 0*
CTE80%=F0 0.06966 0.26435 0.16508
V90%=F0 0* 0.00753 0.13942

CTE90%=F0 0.13890 0.53101 0.29654
V95%=F0 0.11369 0.63524 0.28510

CTE95%=F0 0.24150 0.68515 0.38128

100

V80%=F0 0* 0* 0.03587
CTE80%=F0 0.20713 0.38692 0.37423
V90%=F0 0.17880 0.16539 0.37521

CTE90%=F0 0.36872 0.76163 0.52977
V95%=F0 0.34861 0.86678 0.51769

CTE95%=F0 0.47483 0.91904 0.61174

120

V80%=F0 0* 0* 0.22600
CTE80%=F0 0.37253 0.48659 0.56205
V90%=F0 0.36891 0.36146 0.56039





Chapter 5

Conclusion

In this project, we studied variable annuities with two types of guaranteed benefits: the
GMMB and GMDB riders. We assumed that the returns of the underlying asset for the
considered variable annuities follow Cauchy or skew-normal distributions. Two typical risk
measures, the VaR and the CTE, are calculated for the insurer’s future gross and net
liabilities with either of the two guaranteed benefit riders. In an illustration, we fitted our
proposed asset return models to the historical S&P 500 weekly returns data. We then
compared the calculated risk measure results under the fitted asset return models for both
insurer’s gross and net liabilities with one of the guaranteed benefit riders.

Our main findings of this study are as follows. First, we found that our newly proposed
Cauchy and skew-normal models can fit the returns data better than the normal model
under the maximum likelihood estimation. While the Cauchy model can capture the peak
of the empirical distribution of the returns, the skew-normal model is suitable for left or right



ity contracts. Insurers need to be aware of the positive and negative aspects of using the
distributions we study in this project.

This study can be extended in different ways. We could consider other distributional
models (for example, the skew t distribution) to model the underlying asset returns, and
we may also consider mixture models which are able to capture the peak, skewness, and
heavy tails of the equity returns. We may also consider a variable annuity with both GMMB
and GMDB riders and study the risk measures of the insurer’s liabilities in this case. In
addition, we may use alternative risk measures to calculate the risk capitals of insurers’
future liabilities. For example, the weighted value-at-risk proposed by Cont et al. (2010),
also called the range value-at-risk (RVaR), is the truncation version of the CTE. The RVaR
is suitable in dealing with the fat-tail distributions and infinite tail expectations (Bairakdar
et al., 2020).
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Appendix A

Proofs

The proof for the results presented in Propositions 3.1 to 3.4 for the normal model are given
in Feng and Volkmer (2012). Here, we prove only the results for the Cauchy model. (i.e.,
case (2) in each of Propositions 3.1 to 3.4). The results under the skew-normal model can
be proven similarly, so they are omitted.

A.1 Proof of Proposition 3.1



Since ST =S0 � Log-Cauchy(�T; �T ), we can easily get that

ST

S0
e� (r + m)T � Log-Cauchy(( � � r � m)T; �T );

or
ln

�
ST

S0
e� (r + m)T

�
� Cauchy (( � � r � m)T; �T ) :

Let � = (1-� )/T px . Then, we have

ln

 
e� rT G � V�

F0

!

= ( � � r � m)T + �Tc � ;

where c� is the 100� % percentile of the standard Cauchy distribution. This gives

V� = e� rT G � F0 expf (� � r � m)T + �Tc � g;

which proves (3.20).

A.2 Proof of Proposition 3.2

Proof. From Equation (3.7) and because the future lifetime of the policyholder is indepen-
dent of FT , the CTE� for gross liability of a GMMB rider is given by

CTE� = T px

1 � �
E

h
e� rT (G � FT )I f e� rT (G� FT )> V � g

i
;

when � > � e.

Using (3.8) and letting Y = ln( ST =S0 � e� (r + m)T ) and a = ( e� rT G � V� )=F0, we have

CTE� = T px

1 � �
E

2

4
�

e� rT G � F0
ST

S0
e� (r + m)T

�
I n

e� rT G� F0
ST
S0

e� ( r � = T Sx

1 �

4
�

e� rT 0.398 w 0 0 m 58.357 0 l S
Q
BT
/F40 174 10.9091 Tf 8.3 1.689 Td [(=e=)]TJ/F41 7.9701 Tf 111.955 Td [(�Y0)]TJ/F40 10.9091 T7 0 9is



A.3 Proof of Proposition 3.3

Proof. Recall that the gross liability of a GMDB rider defined by (3.4) is

dL 0
g = e� r� x (e�� x G � F� x )+ I (� x � T):

From Equation (3.6) and by conditioning on the future lifetime of the policyholder � x , V�

can be determined by

1 � � =
Z T

0
P

h
dL 0

g > V�

i
f � x (t)dt;

=
Z T

0
P

h
e� rt

�
e�t G � Ft

�
> V�

i
f � x (t)dt;

when � > � d, and where f � x (t) = t px � x+ t .

Using (3.8), we have

1 � � =
Z T

0
P

�
e� rt

�
e�t G � F0

St

S0
e� mt

�
> V�

�

t px � x+ t dt

=
Z T

0
P

"
St

S0
e� (r + m)t <

e(� � r )t G � V�

F0

#

t px � x+ t dt:

Because St =S0e� (r + m)t � Log-Cauchy(( � � r � m)t; �t ), V� can then be determined by

1 � � =
Z T

0
FC

 

ln

 
e(� � r )t G � V�

F0

!

; (� � r � m)t; �t

!

t px � x+ t dt;

where FC is the cdf of the Cauchy distribution. This proves (3.25).

A.4 Proof of Proposition 3.4

Proof. From Equation (3.7) and by conditioning on the future lifetime of policyholder � x ,
the CTE� for gross liability of a GMDB rider is given by

CTE� = E
h

dL 0
gjdL 0

g > V�

i

=
1

1 � �

Z T

0
E

h
e� rt

�
e�t G � Ft

�
I f e� rt (e�t G� Ft )> V � g

i
t px � x+ t dt;

when � > � d.

Using (3.8), and letting Yt = ln( St =S0 � e� (r + m)t ) and ct = ( e(� � r )t G � V� )=F0), we have

CTE� =
1
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Z T
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E
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e ( r0 m ) t > V�Stpx � x+ t dt=
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