












Figure 1.1: Male individuals are indicated by squares and females by circles. Co-
parents are connected by a horizontal line. Disease-affected individuals are indicated
by solid coloring on the left and individuals with DNA available (i.e. genetic data)
are indicated by hashing on the right.

τ , from parent to offspring is not straightforward. The likelihood of τ arises from the
joint probability of an RV configuration in the disease-affected relatives with sequenc-
ing data. We describe how to calculate this likelihood by casting the pedigree as a
Bayesian network. We find Bayesian networks to be a useful and convenient tool for
calculating joint probabilities of RV configurations and therefore likelihoods.

As families have been ascertained for multiple disease cases, we assume there is
no protective genetic variant, so that the transmission probability of a genetic variant











# store the CPTs of founders in a list, which is denoted as [[i]]

for (i in 1:length(founders)) {

id = pedfile[founders[i], "id"]

founders_vec[i] = id

node = cptable(c(id), values = rep(1/3, 3), levels = copy)

# CPTs of founders

founders_cpt[i] = list(node)

}

# Construct the CPTs for non-founders

pedfile_c = pedfile[-c(founders), ]

# Pedigree data after removing founders

nonfounders_cpt = list()

# Store the CPTs for non-founders

for (i in 1:nrow(pedfile_c)) {

c = pedfile_c[i, ’id’] # id numbers of child

f = pedfile_c[i, "father"] # id numbers of father

m = pedfile_c[i, "mother"] # id numbers of mother

node_nf = cptable(c(c, f, m), values = geno_prob, levels = copy)

# CPTs for non-founders

nonfounders_cpt[i] = list(node_nf)

}

plist = compileCPT(founders_cpt, nonfounders_cpt)

gin = grain(plist)

# Create the Bayesian network from the CPTs of both founders and non-founders

return(gin)

}

The CPTs specify the local dependency of a child’s RV status given the RV status of its
parents. The local dependency structure is straightforward, with children depending
only on their parents. The Bayesian network for a pedigree specifies that an individual
may have 0, 1, or 2 copies of an RV. Each combination of a child and its two parents,
therefore, has 33 = 27 possible RV configurations. The cptable() function in the R
package gRain [9] is called for each child-parent combination to specify the probability
of the 27 possible RV configurations in the CPT. First, CPTs are created for founders
and for non-founders of the pedigree. Next all the CPTs are combined into a list for
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Figure 2.3: Likelihood curve for the extended pedigree in Figure 1.1 when C = (1, 1, 0)

When the RV configuration for the nuclear pedigree of Figure 2.1 is changed to
C = (1, 1, 0), the likelihood curve is shown in Figure 2.5 below. The likelihood curve
reaches a peak at likelihood value 0.15 with a transmission probability of approx-
imately 0.7. Likelihood values increase with the transmission probability when the
transmission probability is less than 0.7, and decrease when the transmission prob-
ability is greater than 0.7. The maximum-likelihood estimate of the transmission
probability is thus τ̂ ≈ 0.7. When C = (1, 1, 0), the peak of the likelihood curve for
the nuclear family is shifted to the left of the peak of the likelihood curve for the
extended pedigree in Figure 2.4. The MLE for the nuclear family is therefore smaller
than for the extended pedigree. Moreover, the likelihood curve for the nuclear family
has slightly less curvature around its MLE (i.e. is flatter) than the likelihood curve
for the extended pedigree in Figure 2.4. The likelihood curve for the nuclear family
is flatter than the one for the extended pedigree because it has fewer transmission
events separating the three affected relatives.
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Figure 2.4: Likelihood curve for the nuclear pedigree of Figure 2.1 when C = (1, 1, 1)

Figure 2.5: Likelihood curve for the nuclear pedigree of Figure 2.1 when C = (1, 1, 0)
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Figure 3.3: Likelihood curve of complex pedigree in Figure 3.1 when C = (1, 1, 1, 1)

ability is greater than 0.8. The maximum likelihood estimate of the transmission
probability is, therefore, τ̂ ≈ 0.8.

Finally, let us conclude by considering the configuration C = (1, 0, 0, 0); that is
ID 206 carries a single copy of the RV and IDs 207, 211 and 214 carry no copies. The
resulting likelihood curve is shown in Figure 3.5 below. The likelihood curve reaches
a peak value when the transmission probability is approximately 0.4. The maximum
likelihood estimate of the transmission probability in this case is τ̂ ≈ 0.4.
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Figure 3.4: Likelihood curve of complex pedigree in Figure 3.1 when C = (1, 1, 0, 1)

Figure 3.5: Likelihood curve of complex pedigree in Figure 3.1 when C = (1, 0, 0, 0)
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for future research is to extend our functions to determine the most likely founder to
introduce the RV into the pedigree given a fixed transmission probability. The most
likely founder would have the largest likelihood contribution for the transmission
probability, and could easily be returned with the other function output.
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