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our empirical study. We provide a summary and conclusions in Chapter 4.

1.2 Fractional Factorial Designs

Fractional factorial designs are useful in examining the effects of a large number of factors

on a response variable of interest using a relatively small number of experimental runs. Any

experimental design that contains less than 2m runs in an m-factor experiment is a frac-

tional factorial. Regular fractional factorial designs are referred to as 2m� p designs, where

the p indicates the corresponding fraction of runs.

Consider a five-factor design each with two levels. A full factorial design requires 25 = 32

runs to estimate all its effects as mentioned below.

Interactions
Average Main Effects 2-factor 3-factor 4-factor 5-factor

1 5 10 10 5 1

Table 1.1: Main Effects and Interaction Effects of a Five-Factor Experiment

However, many of these effects might be negligible in practice. In general, higher order in-

teractions are not of our interest. Very often, experimenters’ main interest lies in estimating

main effects, and hence, it is meaningless to carry out all 32 runs to estimate the thirty-one

effects in the above example. Moreover, when an experiment involves a large number of

factors, higher order interactions are often negligible. That’s where fractional factorial de-

signs come into play. For instance, a half fractional factorial design of a five-factor two-level

experiment is a 25� 1 design. This design uses only sixteen runs to study five factors. Nev-

ertheless, the significant results obtained from both designs will probably be similar (Dey

and Mukerjee (1999)).

Regular fractional factorials are constructed using generators. For instance, in the above

five-factor half fractional factorial experiment, a full 24 design is written for the first four
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1.3 J-Characteristic and a Measure of Three-Dimensional
Projection Property

J -characteristics are useful indicators to recognize the unique features of factorial designs.

The J -characteristic of a single column x is expressed as J (x), which gives the sum of

the elements in that particular vector. The J -characteristic J (x1; x2) represents the inner

product of the two vectors, x1 and x2. All the properties of OAs are also fully determined

by their J -characteristics. If all the J -characteristics of a factorial design for all possible

subsets with t or less columns are zero, the design is an OA with strength t. Consider the

design given in the above matrix with eight runs and four factors. If its columns are denoted

by x i , where i=1, 2, 3 and 4, we obtain that

J1 = f J (x1); J (x2); J (x3); J (x4)g = f 0; 0; 0; 0g,

J2 = f J (x1; x2); J (x1; x3); J (x2; x3); J (x1; x4); J (x2; x4); J (x3; x4)g = f 0; 0; 0; 0; 0; 0g,

J3 = f J (x1; x2; x3); J (x1; x2; x4); J (x1; x3; x4); J (x2; x3; x



an expression for the three dimensional projection property for a factorial design D , as given

below:

V3(D ) = 2 � 6
3X

j =1

 
m � j
3 � j

!
X

jt j= j

J 2
t ; (1.1)

where m is the total number of factors of the design D , and jt j denotes the number of

columns in a subset t of columns. Let

J1-Component = 2� 6� m� 1
2

� P
jt j=1 J 2

t ,

J2-Component = 2� 6� m� 2
1

� P
jt j=2 J 2

t ,

J3-Component = 2� 6 P
jt j=3 J 2

t .

Equation (1.1) clearly explains that the V3 is an overall measurement of J1-, J2- and J3-

components of a design. As discussed in Section 1.4, J1 and J2 characteristics of OAs

of strength two are zero, and hence its V3 measurement completely depends on the J3-

component. On the other hand the V3 measurement of BFDs in our study are determined

by considering only the J2-component, as the corresponding J1 and J3 components are zero

in fold-over designs as explained in the previous section. In general, a higher J2 gives rise to

a high variance whereas the bias of a design increases with the J3. This relationship clearly

explains why the OAs of strength two are variance-optimal and BFDs are bias-optimal. In

conclusion, designs with the lowest V3 are considered to be the best.

1.4 Bias, Variance, and Mean Squared Error

Our goal is to introduce a class of optimal designs with respect to some statistical crite-

ria. We consider the concept of A-optimality in our study, which minimizes the sum of

the variances of estimated main effects.





Still our main focus lies on estimating � (1) as two-factor interactions are not of our interest.

However, �̂ (1) is no longer unbiased under the model indicated in equation (1.3) as proved

below:

E(�̂ (1) ) = ( X T
(1) X (1) )

� 1X T
(1) E(Y)

= ( X T
(1) X (1) )

� 1X T
(1) (X (1) �

(1) + X (2) �
(2) )

= � (1) + ( X T
(1) X (1) )

� 1X T
(1) X (2) �

(2) ;

Bias (�̂ (1) ; � (1) ) = E(�̂ (1) ) � � (1)

= ( X T
(1) X (1) )

� 1X T
(1) X (2) �

(2) :

Nevertheless, the variance-covariance matrix of �̂ (1) is not affected by the two-factor inter-

actions and hence remains unchanged in both models. However, as the estimator is biased

under the new model, the MSE will be changed accordingly. The design which gives the

minimum MSE is considered the best out of the set of designs being compared, where

MSE = � 2trace(X T
(1) X (1) )

� 1 + jj (X T
(1) X (1) )

� 1X T
(1) X (2) �

(2) jj2: (1.4)

All the above models take the intercept into consideration, while our main focus is to

estimate main effects. Let V ar� (�̂ (1) ) = � 2trace(M ) with M being the matrix obtained by

deleting the first row and the first column of (X T
(1) X (1) ) � 1, and Bias � (�̂ (1) ; � (1) ) = B� (2)

with B being the matrix obtained by deleting the first row of (X T
(1) X (1) ) � 1X T

(1) X (2) . Now

under the model (1.3), the MSE for the main effects becomes:

MSE � = V ar� (�̂ (1) ) + jjBias � (�̂ (1) ; � (1) )jj2 (1.5)

= � 2trace(M ) + jjB� (2) jj2: (1.6)
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Chapter 2

Design Methodology

In this chapter, we discuss three classes of designs used in our study. As mentioned before,

our main goal is to give an alternative class of designs to use in the situations where OAs

of strength three do not exist. Section 2.1 describes variance-optimal designs used in our

study, whereas bias-optimal designs are given in Section 2.2. We introduce an alternative

class of designs called nearly orthogonal arrays of strength three in Section 2.3 and discuss

different approaches used to construct them. Finally, the method used to compare the three

types of designs will be discussed in Section 2.4.

2.1 Variance-Optimal Designs

In this study, we consider designs with run sizes 10, 12, 14, 18, 20 and 28. For run sizes 12, 20

and 28, OAs of strength two are available. The OAs used in this study were constructed from

Hadamard matrices. A Hadamard matrix is a square matrix with entries +1 and � 1, whose

rows are mutually orthogonal. This was initially introduced by Sylvester (1867) and later

considered by Hadamard (1893). It has the mathematical property that H T H = HH T = nI ,

where I is an identity matrix with order n. Hadamard matrices are available for orders

1, 2 and for orders that are multiples of four. The method of tensor product allows the

construction of Hadamard matrices with large orders from those with smaller orders. For

example, a 4 � 4 Hadamard matrix can be constructed by a 2 � 2 Hadarmard matrix as

illustrated below.

10
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A Hadamard matrix is a valuable tool to construct OAs of strength two and three. Con-

sider a Hadamard matrix with the first column containing only 1’s, which is said to be

normalized. Strength two OAs can be obtained by deleting the all 1’s column of the corre-

sponding Hadamard matrix. The resulting OA is denoted by OA(n; 2n� 1; 2), which contains

the maximum number of factors to be included in a strength-two OA with n runs. The array

obtained by removing one or more columns is still orthogonal with strength two. Hence,

a Hadamard matrix with order n can easily be used to construct an OA(n; 2n0
; 2) for any

n0� n � 1.

We choose OAs of strength two with minimum G2-aberration to be the variance-optimal

designs, as they provide the minimum bias among all the non-isomorphic OAs of strength

two, while minimizing the variance of estimated main effects among all possible designs.

Let s = f x1; :::; xkg represent any k subset of the design matrix D . Let

Bk (D ) =
X

jsj= k

(Jk (s)=n)2;

According to Tang and Deng (1999) and Schoen et al. (2017), for given designs D1 and D2,

D1 is said to have less G2-aberration than D2 if B r (D1) < B r (D2), where r is the smallest

integer such that B r (D1)s



We also consider run sizes 10, 14 and 18 in our study, which involve non-orthogonal

fractional factorial designs. According to Dey and Mukerjee (1999), when the run size of a

design is even but not a multiple of four, the variance-optimal designs can be obtained by

adding two speci�c runs to the closest lower order OA.

Lemma 1. The design obtained by adding two runs of form l1 = (1 ; :::; 1) and l2 =

(1; :::; 1; � 1; :::; � 1) to an orthogonal array is universally optimal and hence A-optimal.

Suppose a factorial design consists ofm factors. Then l1 is a vector containing m +1's and

l2 contains m1 and m2 +1's and -1's respectively, whereasm1 is the largest integer that is

smaller than or equal to m=2 and m2 = m � m1. To illustrate, we obtain a variance-optimal

design for 10 runs with 5 factors by using �ve columns of the Hadamard matrix of order 8

and then adding two speci�c runs with l1 being (1,1,1,1,1) andl2 being (1,1,-1,-1,-1) to it.

In short, while we use OAs of strength two for run sizes 12, 20 and 28, Lemma 1 is used for

run sizes 10, 14 and 18 in order to obtain the variance-optimal designs. The below10 � 5

variance-optimal design is obtained by considering the �rst �ve columns starting from the

second column of the Hadamard matrix of order eight.
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2.2 Bias-Optimal Designs

Even though variance-optimal designs have the minimum variance, their MSE may get

too large due to the bias. In our study, we also consider a special class of designs called

bias-optimal designs, which provide zero bias and hence, their MSE is completely based

on the variance portion. Margolin (1969) demonstrates that folding over an efficient non-

orthogonal resolution III design with n runs produces a non-orthogonal resolution IV design

with 2n runs. Such a design has zero bias and provides the minimum variance among all

non-orthogonal fold-over designs. For convenience, they are called best fold-over designs

(BFDs) throughout our study. In folding over a design, all the factor levels are reversed to

form runs that are mirror images of those in the initial factorial design.

Nevertheless, BFDs do exist up to n=2 factors for a design with n runs. More precisely,

when the run size is 10, a BFD is available for up to five factors. We use the efficient non-

orthogonal resolution III designs summarized by Margolin (1969) to produce the BFDs of

run sizes 10, 12, 14, 18, 20 and 28 with the number of factors being 5, 6, 7, 9, 10 and 14

respectively. The BFD for n = 10 and m = 5 is constructed as below, where the second half

of the design is a mirror image of the first half.

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 1 1� 1 1

1 1 � 1 1 1

1 � 1 1 1 1

� 1 1 1 1 1

� 1 � 1 � 1 � 1 1

� 1 � 1 � 1 1 � 1

� 1 � 1 1 � 1 � 1

� 1 1 � 1 � 1 � 1

1 � 1 � 1 � 1 � 1

1 1 1 1� 1



2.3 Nearly Orthogonal Arrays of Strength Three and Their
Construction

In this section, we search for a set of alternative designs to use when OAs of strength three

do not exist. Variance-optimal designs are efficient in optimizing the variance but their MSE

may be too large due to the large bias. On the other hand, BFDs are bias-optimal, but the

possible high variance may lead to a large MSE. We aim at constructing an alternative de-

sign, for each run size being considered in this study, to minimize both variance and bias to

some extent. The design that has the lowest V3 is chosen to be the best alternative design to

use in our study. Such designs are similar to the OAs of strength three, as they are intended

to minimize both bias and variance simultaneously in contrast to variance and bias-optimal

designs. We call such factorial designs nearly orthogonal arrays (NOAs) of strength three.

We consider the construction of nearly orthogonal arrays of strength three under two

scenarios. In the first scenario, we consider the situation of m = n=2, where both variance-

optimal designs and BFDs are available. In the second scenario, we consider the number of

factors in a design to be greater than the half of the number of runs by 1 (m = n=2 + 1), in

which case BFDs are not available. The construction of NOAs of strength three is done sep-

arately under the two scenarios using two approaches, partially folding-over OAs of strength

two and adding runs to OAs of strength two. Once the best design is found from the two







Design NOA0 NOA1 NOA2 NOA3 NOA4 Best NOA

V3 50 48 46.5 46 45 45

Table 2.1: Complete Set of Iterations of the Local Search Algorithm For the 20� 10Exper-

iment

2.4 An MSE Criterion for Comparing Different Designs

The three dimensional projection property (V3) provides a goodness measure for a fractional



where � = N
(m

2 ) denotes the proportion of significant two-factor interactions, which is called

the fraction of sparsity, K 2 = tr (BB T ), and M and B matrices are previously defined in

Section 1.3.
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Chapter 3

Results of Comparisons

In this chapter, we summarize the important results of our study. We first describe how

variance-optimal designs and bias-optimal designs perform using an example. The MSE

is computed for both existing designs in 10 runs and 5 factors to illustrate their general

behavior. In Section 3.1, we consider six experiments with 10, 12, 14, 18, 20 and 28 runs

in m = n=2 factors. We conduct the same comparison for variance-optimal designs, bias-

optimal designs and best NOAs of strength three in those experiments. The MSE calculation

is done under seven different values of �=� , which is indicated by C throughout our study.

For convenience, we take � = 1 in all our calculations with C = �=� = � = 0.025, 0.05, 0.1,

0.25, 0.5, 1 and 2. In every experiment, we also consider six different scenarios by changing

the proportion of non-negligible two-factor interactions from 1 to 1=32. Thus, we take �

= 1, 1/2, 1/4, 1/8, 1/16 and 1/32. Our goal here is to provide a range of C given by C1

and C2 such that the alternative design outperforms the corresponding two existing designs

within the range of C1 to C2. In Section 3.2, we consider another six experiments having

the same set of run sizes, but with m = n=2 + 1 factors, where the bias-optimal designs

do not exist. Thus, we compare the available variance-optimal designs with the best NOAs

for the same set of run sizes with 6, 7, 8, 10, 11 and 15 factors, respectively, by considering

their MSEs. We provide a cut-off value C � for C in each of the experiments so that the

alternative design outperforms the corresponding variance-optimal design when C > C � .

19



To understand the behaviour of variance-optimal designs and bias-optimal designs, we

first examine in detail an example in which 5 factors are studied using 10 runs. We compute

the MSE by taking effect sparsity into consideration as expressed in equation (2.1). Even

though the variance of variance-optimal designs remains constant, the bias increases with

the fraction of sparsity, which leads to the gradual increment in the MSE of estimated main

effects. However, the MSE of bias-optimal designs remains unchanged as only the variance

of such designs contributes to the MSE. This disproportionate behavior allows us to obtain

a cut-off point, beyond which the best fold-over design performs better than the variance-

optimal design of the same order. The example below summarizes the bias, variance and

the MSE of estimated main effects of the two designs in an experiment with 10 runs and 5

factors when all two-factor interactions are significant.

n m C = �=�
VOD BFD

Variance Bias MSE Variance Bias MSE

10 5 0.025 0.536 0.004 0.54 0.556 0 0.556

0.05 0.536 0.014 0.55 0.556 0 0.556

0.1 0.536 0.057 0.593 0.556 0 0.556

0.25 0.536 0.353 0.889 0.556 0 0.556

0.5 0.536 1.413 1.949 0.556 0 0.556

1 0.536 5.653 6.189 0.556 0 0.556

2 0.536 22.612 23.148 0.556 0 0.556

Table 3.1: Variance, Bias and MSE for Variance and Bias-Optimal Designs with 10 Runs

and 5 Factors When All Two-Factor Interactions are Significant (� = 1 )

20



Figure 3.1: Comparison of the MSE for Variance and Bias-Optimal Designs withn=10 and

m=5 when � = 1

Table 3.1 indicates that the MSE of the variance-optimal design is smaller at lower

values ofC, but gradually increases with � to exceed the MSE of the bias-optimal design at

a certain point, which is approximately 0.059 according to Figure 3.1. Hence, it is clear that

the variance-optimal design is better at lower values ofC, while the bias-optimal design

outperforms the variance-optimal design whenC exceeds 0.059. We can observe a similar

trend for the two types of designs for other run sizes.

3.1 Comparison of Variance-Optimal Designs and Bias-Optimal
Designs with Best Nearly Orthogonal Arrays of Strength
Three

In this section, we carry out the same comparison by using the best NOAs of strength three.

We choose designs with the lowestV3 to be the best NOAs as discussed in Section 2.3. We

consider six experiments having 10, 12, 14, 18, 20, 28 runs with 5, 6, 7, 9, 10, 14 factors

respectively. In each experiment, we aim to compare all three types of designs together

21



to identify three separate regions of C, in each of which one design performs better than

the other two. The V3 values and the corresponding J -components of the three types of

designs in each experiment are displayed in Table 3.2. There are two best NOAs that per-

form equally well for run size 28. Hence, both of the designs are listed, as NOA 1 and NOA 2.

n m Design V3 J1-Component J2-Component J3-Component

10 5 VOD 4.375 0.75 0.75 2.875

BFD 1.875 0 1.875 0

NOA 3.125 1.125 0.75 1.25

12 6 VOD 5 0 0 5

BFD 6 0 6 0

NOA 5 0 3 2

14 7 VOD 14.312 2.812 2.812 8.688

BFD 59.063 0 59.063 0

NOA 6.813 2.813 2.813 1.188

18 9 VOD 44.75 7 7 30.75

BFD 29.75 0 29.75 0

NOA 27.75 1.75 12.25 13.75

20 10 VOD 30 0 0 30

BFD 50 0 50 0

NOA 45 22.5 0 22.5

28 14 VOD 91 0 0 91

BFD 126 0 126 0

NOA 1 136.5 68.25 0 68.25

NOA 2 136.5 63.375 9.75 63.375

Table 3.2: Three Dimensional Projection Property of Variance-Optimal Designs, Bias-

Optimal Designs and Best NOAs in experiments with n=10, 12, 14, 18, 20, 28 where

m = n=2

22



We use equation (1.1) to calculate all the values listed in Table 3.2. The orthogonal

arrays of strength two are used as variance-optimal designs in experiments with 12, 20 and

28 runs, and hence their J1- and J2-components are zero. This is explainable as an OA

of strength two is balanced and its columns are orthogonal to each other. Thus, only the

J3-component contributes towards the V3. OAs of strength two are not available for run

sizes 10, 14 and 18, where the corresponding variance-optimal designs are constructed us-

ing Lemma 1. In both situations, we can observe from Table 3.2 that the variance-optimal

designs provide lower J2-components. In contrast, J3-components of bias-optimal designs

are zero in every experiment, resulting in zero bias.

Nevertheless, the J2-component of the best NOA in an experiment is lower than that

of the bias-optimal design, indicating that it provides a variance lower than that of the

bias-optimal design. Moreover, the best NOA provides a J3-component lower than that of

the variance-optimal design but considerably higher than that of the bias-optimal design.

This contradictory relationship clearly explains the fact that the bias of a best NOA found

in our study is lower than that of the corresponding variance-optimal design, while it is

undoubtedly higher than the bias-optimal design. In conclusion, the above-explained bias-

variance trade off among the set of three designs allows us to find three separate regions of

C
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Figure 3.2: Comparison of the MSE for Designs With n=10 and m=5

According to Figure 3.2, the MSE of the variance-optimal design is the lowest for smaller

values of C, which gradually increases to exceed the MSE of both the NOA and the bias-
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optimal design. Hence, the MSE of the variance-optimal design is the highest at higher values

of C. The MSE of the best NOA slightly increases over the range of C and lies completely

below the curve of the variance-optimal design after a certain point, while it eventually ex-

ceeds the constant MSE of the bias-optimal design. The MSE of both the variance-optimal

design and the best NOA increases with the fraction of sparsity being considered in the

study according to equation (2.1). For instance, when all the two-factor interactions are

considered non-negligible, the two curves cross the curve of the best fold-over design at C

values 0.059 and 0.067 respectively, whereas when only a half of the two-factor interactions

are significant (� = 1=2), the intersections happen at slightly higher points, 0.083 and 0.095.

Figure 3.2 suggests three separate regions within each of which one out of the three

designs performs better than the remaining two. Suppose the point where the curve of the

variance-optimal design intersects that of the best NOA is indicated as C1 and the intersect-

ing point of curves of the best NOA and the bias-optimal design is named as C2. Regardless

of the fractions of sparsity being considered, the variance-optimal design and the best fold-

over design perform the best when C < C 1 and C > C 2, respectively. The best NOA of the

same order outperforms the two existing designs when C1 < C < C 2. For example, the best

NOA of order 10� 5 outperforms the corresponding variance-optimal design and the bias-

optimal design in the range of 0:025< C < 0:068when none of the two-factor interactions

are negligible, which means � = 1 . Table 3.3 below summarizes the list of C1 and C2 values

for all of the experiments listed in Table 3.2 for � = 1 ; 1=2; 1=4; 1=8; 1=16; 1=32. Figure 3.3

illustrates how the points C1 and C2 change when the fraction of sparsity increases. In

conclusion, experimenters may use the listed regions to decide which design to use in their

experiments.

ˆ when C < C 1: Variance-optimal design is the best,

ˆ when C1 < C < C 2: Best NOA is the best,

ˆ when C > C 2: Bias-optimal design (BFD) is the best.
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n m � = 1 � = 1=2 � = 1=4 � = 1=8 � = 1=16 � = 1=32

10 5 C1 0.025 0.036 0.051 0.071 0.101 0.143

C2 0.068 0.095 0.135 0.191 0.27 0.381

12 6 C1 0.306 0.433 0.612 0.866 1.225 1.732

C2 0.339 0.479 0.677 0.957 1.354 1.915

14 7 C1 0.064 0.091 0.128 0.182 0.257 0.363

C2 0.218 0.309 0.436 0.617 0.873 1.234

18 9 C1 0.027 0.038 0.053 0.076 0.107 0.151

C2 0.111 0.158 0.223 0.315 0.446 0.63

20 10 C1 0.048 0.068 0.095 0.135 0.19 0.269

C2 0.094 0.133 0.188 0.265 0.375 0.53

28 14 C1 0.025 0.035 0.05 0.07 0.099 0.14

C2 0.045 0.064 0.09 0.128 0.181 0.255

C1 0.037 0.053 0.075 0.105 0.149 0.211

C2 0.043 0.061 0.087 0.122 0.173 0.245

Table 3.3: C1 and C2 at different values of � in experiments with m = n=2

Figure 3.3: C1 and C2 of the experiment of 10� 5 as a function of �
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3.2 Comparison of Variance-Optimal Designs and Best Nearly
Orthogonal Arrays of Strength Three When Best Fold-
Over Designs Do Not Exist

Best fold-over designs do not exist when the number of factors in an experiment is greater

than half the number of runs being considered. Therefore, only variance-optimal designs are

available to use in such situations. Our goal in this section is to introduce some alternative

designs for practitioners to use over variance-optimal designs. We provide a list of the best

NOAs of strength three for experiments in 10; 12; 14; 18; 20; 28 runs with m = n=2 + 1 fac-

tors. We use the same procedure explained in Section 2.3 to construct best NOAs. For each

experiment, we aim to compare the variance-optimal design with the best NOA in terms of

the MSE to provide two separate regions of C, in which each of the designs performs better

than the other design. Table 3.4 contains the V3 values and the J -components of the two

designs in each experiment.

n m Design V3 J1 Component J2 Component J3 Component

10 6 VOD 10 1.875 1.5 6.625

NOA 7.75 0 3.75 4

12 7 VOD 8.75 0 0 8.75

NOA 9.25 0 6.25 3



According to Table 3.4, the J2-component of the variance-optimal design is the lowest

indicating the variance optimality. The best NOA contains the lowest J3-component as it

provides a smaller bias as compared to the variance-optimal design. To illustrate, we use

the experiment of dimension 10� 6 by changing C = �=� when � = 1 .

n m C = �
�

VOD NOA

Variance Bias MSE Variance Bias MSE

10 6 0.025 0.65 0.008 0.657 0.675 0.007 0.682

0.05 0.65 0.031 0.680 0.675 0.026 0.701

0.1 0.65 0.122 0.771 0.675 0.103 0.778

0.25 0.65 0.762 1.411 0.675 0.645 1.32

0.5 0.65 3.046 3.696 0.675 2.58 3.255

1 0.65 12.184 12.833 0.675 10.32 10.995

2 0.65 48.735 49.384 0.675 41.28 41.955

Table 3.5: Comparison of the MSE for the Variance-Optimal Design and the Best NOA

With 10 Runs and 6 Factors When All Two-Factor Interactions are Significant

According to Table 3.5, the variance of estimated main effects of both designs remains

unchanged, being unaffected by � . We can clearly observe that the MSE of the variance-

optimal design is smaller at lower values of C and it gradually increases to exceed the MSE

of the best NOA when C increases. That suggests that best NOAs are better than variance-

optimal designs at higher values of C



Figure 3.4: Comparison of the MSE of Designs with n=10 and m=6

As can be seen in Figure 3.5, the C � value increases as � decreases. That is because

the bias decreases when � decreases according to the equation (2.1), and hence the MSE
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Appendix A

List of Designs

A.1 Designs used in the case where m = n=2; the Variance-
Optimal Design, Bias-Optimal Design and the Best NOA
respectively.

For n = 10 and



For n = 14 and m = 7

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

� 1 � 1 1 � 1 1 1� 1
� 1 � 1 � 1 1 � 1 1 1

1 � 1 � 1 � 1 1 � 1 1
� 1 � 1 � 1 � 1 � 1 � 1 � 1

1 1 � 1 � 1 � 1 1 � 1
1 1 1� 1 � 1 � 1 1
1 1 � 1 1 1 1� 1

� 1 1 � 1 1 1� 1 1
1 � 1 1 1� 1 1 1
1 � 1 1 1 1� 1 � 1

� 1 1 1� 1 1 1 1
� 1 1 1 1� 1 � 1 � 1

1 1 1 1 1 1 1
1 1 1� 1 � 1 � 1 � 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 � 1 � 1 � 1 � 1 � 1 � 1
� 1 1 � 1 � 1 � 1 � 1 � 1
� 1 � 1 1 � 1 � 1 � 1 � 1
� 1 � 1 � 1 1 � 1 � 1 � 1
� 1 � 1 � 1 � 1 1 � 1 � 1
� 1 � 1 � 1 � 1 � 1 1 � 1
� 1 � 1 � 1 � 1 � 1 � 1 1
� 1 1 1 1 1 1 1

1 � 1 1 1 1 1 1
1 1 � 1 1 1 1 1
1 1 1� 1 1 1 1
1 1 1 1� 1 1 1
1 1 1 1 1� 1 1
1 1 1 1 1 1� 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 1 1 1 1 1 1
� 1 1 � 1 1 � 1 1 � 1

1 � 1 � 1 1 1� 1 � 1
� 1 � 1 1 1� 1 � 1 1

1 1 1� 1 � 1 � 1 � 1
� 1 1 � 1 � 1 1 � 1 1

1 � 1 � 1 � 1 � 1 1 1
� 1 � 1 1 � 1 1 1� 1
� 1 � 1 � 1 � 1 � 1 � 1 � 1

1 � 1 1 � 1 1 � 1 1
� 1 1 1� 1 � 1 1 1

1 1 � 1 � 1 1 1� 1
� 1 � 1 � 1 1 1 1 1

1 � 1 1 1� 1 1 � 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

For n = 18 and m = 9

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

� 1 1� 1 1� 1� 1� 1� 1 1
1 1 1� 1 1� 1� 1� 1 1

� 1� 1 1� 1 1� 1 1� 1� 1
1� 1� 1� 1 1� 1 1 1 1

� 1� 1 1 1 1 1� 1 1� 1
1 1 1� 1� 1 1 1� 1� 1

� 1 1� 1 1 1 1 1� 1� 1
� 1 1� 1� 1 1� 1� 1 1� 1
� 1 1� 1� 1� 1 1 1 1 1

1 1 1 1� 1� 1� 1 1� 1
1 1 1 1 1 1 1 1 1

� 1� 1 1� 1� 1 1� 1� 1 1
1� 1� 1 1� 1� 1 1� 1� 1
1� 1� 1� 1� 1 1� 1 1� 1
1� 1� 1 1 1 1� 1� 1 1

� 1� 1 1 1� 1� 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1� 1� 1� 1� 1� 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1� 1 1� 1� 1� 1 1 1� 1
1� 1 1� 1 1 1 1 1 1

� 1� 1� 1� 1 1 1� 1 1� 1
� 1� 1 1 1� 1 1 1� 1� 1
� 1� 1 1 1 1� 1� 1 1� 1

1� 1� 1 1� 1 1� 1 1 1
� 1� 1 1� 1� 1� 1� 1� 1 1
� 1� 1� 1 1� 1� 1 1 1 1

1� 1� 1 1 1� 1 1� 1� 1
� 1 1� 1 1 1 1� 1� 1 1
� 1 1� 1 1� 1� 1� 1� 1� 1

1 1 1 1� 1� 1 1� 1 1
1 1� 1� 1 1� 1� 1 1 1
1 1� 1� 1� 1 1 1� 1 1

� 1 1 1� 1 1� 1 1� 1� 1
1 1� 1 1 1 1 1 11 1 11

� 1�1� 1�78 Td [(C)]TJ 0 -5.977 Td [(C)]TJ 0 -5.978 Td [(C)]TJ 0 -5.978 Td [(C)]TJ 0 -5.977 Td [(C)]TJ 0 -0 Td [(1)]TJ/F43 10.9091 Tf 6.053 0 Td [(�)]TJ/f 8.484 0 Td [(1)]TJ -116.297 -9.309 Td [(1)-833(1)-832(1)-833(1)]TJ/F43 10.90828-832(1)-833(1)-832(1)-833(1)-833(1)]TJ 0 -9.309 Td [(1)-833(1)-832(1)-833(1)]TJ/F43 10.9091 Tf 49.664 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)]TJ/F43 10.9091 Tf 6.052 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)]TJ/F43 10.9091 Tf 6.053 0 Td [(�)]T 0 Td [(1)-833(1)-832(1)]TJ/F43 10.9091 Tf 35.127 0 Td [(�)]TJ/F37 10= -0 Td [(1)]TJ/F43 10.9091 Tf 6.05685 0 Td [(1)]TJ/F43 10.9091 Tf 6.052 0 Td [d [(�)]TJ/F37 Td [(�)]T[(1)-833(1)]TJ/F43 10.9091 Tf 20.589 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf 20.589 0 Td [(�)]r7[(1)]TJ/F43 1C91 Tf 6.053 0 Td [(�)]T 0 Td [(1)-833(1)-832(1)]TJ/F43 10.9091 Tf 35.8.491 Tf 20.59 0 Td [(� 0 -5.978 Td 4210)]264 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)]TJ/F43 10.9091 Tf 6.052 0 Td [(�)]TJ/F37 1J 0 -5.977 Td [(B)]TJ 0 -5.978 Td [(B)]TJ 0 -5.978 Td [(B)]TJ 0 -5.977 Td [(B)]TJ 0 -5.978 Td [(B)]TJ 0 -5.977 Td [(B)]TJ 0 -5.978 Td [(B)]TJ 0 -5.978 Td [(B)]TJ 0 -5.977 Td [(B)]TJ 0 -5.978 Td [(B)]TJ 0 -5.978 Td 5 0 Td [(1)-F43 10.9091 Tf 6.052 0 Td [(�)]TJ/F37 1J 0 -5.977 Td [(B)]TJ 0 -5.978 Td [(B)]TJ 0 -5.978 Td [(B)]TJ 0 -5.977 Td [(B)]TJ 0 -5.978 Td [(B)]TJ 0 [(�)]TJ/F37 10.9091 Tf 8.484 0 Td [(1)]TJ/F43 10.9091 Tf 6.053 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)-833(1)]TJ -101.761 -9.309 Td [(1)]TJ/F43 10.9091 Tf 6.053 0 Td [(�)]TJ/J/F43 10.9091 Tf 20.589 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)]TJ/f 20.589 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf 20.589 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf 20.59 0 Td [(� 0 Td [(1)]TJ/F43 10.9091 Tf 6.052 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)]TJ/F43 10.9091 Tf 6.053 0 Td [(�)]T 0 Td [(1)-833(1)-83280.9091 Tf 6.05685 0 Td [(1)]TJ/F43 10.9091 Tf 6.052 0 Td [d [(�)]TJ/F37 Td [(�)]T[(1)-833(1)]TJ/F43 10.9091 Tf 20.589 0 Td [(�)]TJ/F37 10.9091 Tf091 Tf 8.484 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf 20.59 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)-833(1)-832(1)-833(1)-832(1)-833(1)]TJ/F43 10.9091 Tf -52.097 -9.309 Td [(�)]TJ/F37 8 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf 20.59 0 Td [(�)]TJ/F37 6(C)]TJ 0 -0 Td [(1)]TJ/F43 10.9091 Tf 6.053 0 Td [(�)]TJ/f 8.484 0 Td [(1)]TJ -116.297 -9.309 Td [(1)-833(1)-832(1)-833(1)]TJ/F43 10.90828-832(1)-833(1)-832(1)-833(1)-833(1)]TJ 0 -9.309 Td [(1)-833(1)-832(1)-833(1)]TJ/F43 10.9091 Tf 49.664 0 Td [(�)]TJ-5.978 Td [(B)]TJ 0 -5.978 Td 5 09 Tf 8.485 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf 20.589 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)]TJ/F43 10.9091 Tf -124.782 -9.308 Td [(�)]TJ/F37 10.9091 Tf 8.484 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf 20.59 0 Td [(�)]TJ/F37 10.9091F37 10.9091 Tf 8.485 0 Td [(1)-833(1)]TJ -101.761 -9.309 Td [(1)]TJ/F43 10.9091 Tf 6.053 0 Td [(�)]TJ/J/F43 10.9091 8.485 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf 20.589 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf 20.59 0 Td [(� 0 Td [(1)]TJ/F43 10.9091 Tf 6.052 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)]TJ/F43 10.9091 Tf 6.053 0 Td [(�)]T 0 Tf 8.484 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf 20.59 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td  8.485 0 Td [(1)]81)-832(1)]TJ/F43 10.9091 Tf 35.127 0 Td [(�)]TJ/F37 10= -0 Td [(1)]TJ/F43 10.9091 Tf 6.05685 0 Td [(1)]TJ/F43 10.9091 Tf 6.052 0 Td [d [(�)]TJ/F37 Td [(�)]T[(1)-83.978 Td [(C)]TJ 0 -5.978 Td [(C)]TJ 0 -5.977 Td [(C)]TJ 0 -5.978 Td [(C)]TJ 0 -5.977 Td [(C)]TJ 0 -5.978 Td [(C)]TJ 0 -5.978 Td [(C)]TJ 0 -5.977 Td [(C)]TJ 0 -5.978 Td [(C)]TJ 0J/F43 10.9091 8.485 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf 20.589 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf 20.59 0 Td [(� 0 Td [(1)]TJ/F43 10.9091 Tf 6.052 0 Td [(�)]TJ/F 0 Td [(1)]TJ/f 20.589 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf 20.589 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf [(1)-833(1)-832(1)]TJ/F43 10.9091 Tf 35.127 0 Td [(�)]TJ/F37 10= -0 Td [(1)]TJ/F43 10.9091 Tf 6.056B)]TJ 0 -5.978 Td [(B)]TJ 0 -5.977 Td [(B)]TJ 0 -5.978 Td [(B)]TJ 0 [(�)]TJ/ 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)]TJ -116.298 -9.308 Td [(1)]TJ/F43 10.9091 Tf 6.053 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)]TJ/F43 10.9091 Tf 6.052 0 Td 8 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf 2043 10.9091 Tf 20.589 0 Td [(�)]TJ/F37 10.9091 Tf 880.9091 Tf 6.05685 0 Td [(1)]TJ/F43 10.9091 Tf 6.052 0 Td [d [(�)]TJ/F37 Td [(�)]T[(1)-833(1)]TJ/F43 10.9091 Tf 20.589 0 Td [(�)]TJ/F37 10.9091 Tf091 Tf 8.482(1)-1051(1)-1052(1)]TJ -33.856 -9.309 Td [(1)]TJ/F43 10.9091 Tf 8.443 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)-1052(1)-1052(1)]TJ/F43 10.9091 Tf 42.3 0 Td [(�)]TJ/F37J/F43 10.9091 Tf 20.589 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)]TJ/F43 10.9091 Tf 6.052 0 T6d [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)]TJ/F43 10.9091 Tf 6.052 0 Td [(�)]TJ/F37 1J 0 -5.977 Td [(B)]TJ 0 -5.978 Td [(B)]TJ 0 -5.978 Td [(B)]TJ 0 -5.977 Td [(B)]TJ 0 -5.978 Td [(B)]TJ 0 -5.977 Td [(B)]TJ 0 -5.978 Td [(B)]TJ 0 -5.978 Td [(B)]TJ 0 -5.97)]TJ/F43 10.9091 Tf [(1)-833(1)-832(1)]TJ/F485 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf 20.589 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)]TJ/F43 10.9091 Tf 6.053 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)]TJ/F.978 Td [(B)]TJ 0 -5.977 Td [(B)]TJ 0 -5.978 Td [(B)]TJ 0 -5.977 Td [(B)]TJ 0 -5.978 Td [(B)]TJ 0 -5.978 Td [(B)]TJ 0 -5.977 Td [(B)]TJ 0 -5.978 Td/F37 10.9091 Tf 85 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf 20.589 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td9 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf 20.59 0 Td [(� 0 Td [(1)]TJ/F43 10.9091 Tf 6.052 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)]TJ/F43 10.9091 Tf 6.053 0 Td [(�)]T 0 Tf 8.484 0 Td [(1)-833([(C)]TJ 0 -0 Td [(1)]TJ/F43 10.9091 Tf 6.053 0 Td [(�)]TJ/f 8.484 0 Td [(1)]TJ -116.297 -9.309 Td [(1)-833(1)-832(1)-833(1)]TJ/F43 10.90828-832(1)-833(1)-832(1)-833(1)-833(1)]TJ 0 -9.309 Td [(1)-833(1)-832(1)-833(1)]TJ/F43 10.9091 Tf 49.664 0 Td [(�)]T1 Tf 8.485 0 Td [(1)]TJ/F43 10.9091 Tf 6.052 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)]TJ/F43 10.9091 Tf 6.052 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)]TJ/F43 10.9091 Tf 6.052 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf]TJ/F43 10.9091 Tf -110.245 -9.309 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)-833(1)-832(1)]TJ/F43 10.9091 Tf 35.127 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf 20.589 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)-833(1)]TJ/F43 10.9091 Tf 20.589 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td 9091 Tf 25.372 0 T34.1930 T[(1)1F37 10.9091 Tf 8.485 0 Td [(1)-1052(1)]TJ/F43 10.9091 Tf -93.126 -9.308 T8.484 0 Td [(1)]200.9091 Tf 8.485 0 Td [(1)-1052(1)-1051(1)]TJ/F43 10.9091 Tf 42.3 0 Td [(�)]TJ/F37 10.9091 Tf 8.484 0 Td [(1)]10J/F43 10.9091 Tf 8.495.31d [(9-5.97091 Tf 8.443 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)]TJ/F43 10.9091 Tf 8.444 0 Td [(�)]TJ/F37 10.9091 Tf 8.48)]TJ -116.297 -9.309 Td [(1)-833(1)]TJ/F43 10.9091 Tf 20.589 0 Td [(�)]TJ/F37 10.9091 Tf 8.485 0 Td [(1)-833(1)-832(1)-833(1)-832(1)-833(1)]TJ/F43 10.9091 Tf 78.7390 Td [(1)-833(1)-832(1)]TJ/F43 10.9091 Tf 35.126 0 Td]TJ/F43 10.9091 Tf 8.444 0 Td [(�)]TJ/F37 10.9091 Tf 8.48)]TJ -116.297 -9.309 Td [(1)-833(1)]TJ/F43 10.9091 Tf 20/F37 10.9091 Tf 8.485 0 Td [(1)] 0 7833(91 3J/F43 10.9091 Tf 35.8.491 Tf 20.59 0 Td [(� 0 -5.978 Td 4210)]2643 13(1)]TJ/F43 10.9091 Tf 49.664 0 Td [(�)]T1 Tf 8.485 0 Td [(1)]T43 393(1)]TJ/F43 10.9091 Tf 49.664 0 Td [(�)]T1 Tf 8.485 0 Td [(1)]T43 13(1)]TJ/F43 10.9091 Tf 49.664 0 Td [(�)]T1 Tf 8.485 0 Td [(1)]T43 393(1)]TJ/F43 10.9091 Tf 49.664 0 Td [(�)]T1 Tf 8.485 0 Td [(1)]T43 13(1)]TJ/F43 10.9091 Tf 49.664 0 Td [4�)]T1 Tf 8.485 0 Td [(1)]T43 13(1)]TJ/F43 10.9091 Tf 49.664 0 Td [(�)]T1 Tf 8.485 0 Td [(1)]T43 13(1)]TJ/F43 10.9091 Tf 49.664 0 Td [4�)]T1 Tf 8.485 0 Td [(1)]T43 13(1)]TJ/F43 10.9091 Tf 49.664 0 Td [(�)]T1 Tf 8.485 0 Td [(1)]T43 3 Td [(1)-1052(1)-1052(1)]TJ/F43 10.9091 Tf 42.3 0 Td [(�)]TJ/F37J/69.805F43 1961
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For n = 12 and m = 7
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For n = 14 and m = 8
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For n = 18 and m = 10
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For n = 20 and m = 11
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For n = 28 and m = 15
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