




Abstract

Septic shock is a leading cause of death in intensive care units. Septic shock occurs when a

body-wide infection leads to low blood pressure, and ultimately organ failure. Some recent

studies suggest that overweight and obese patients have a better chance of survival follow-

ing septic shock than normal or underweight patients. In this project we apply Mendelian

randomization to assess whether the observed obesity e�ect on 28-day survival following

septic shock is causal or more likely due to unmeasured confounding variables. Mendelian

randomization is an instrumental variables approach that uses genetic markers as instru-

ments. Under modelling assumptions, unconfounded estimates of the obesity e�ect can be

obtained by �tting a model for 28-day survival that includes a residual obesity term. Data

for the project comes from the Vasopressin and Septic Shock Trial (VASST). Our analysis

suggests that the observed obesity e�ect on survival following septic shock is not causal.

Keywords: Obesity; Septic Shock; Causal Inference; Instrumental Variables; Mendelian

Randomization
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patients was signi�cantly lower than in low or normal weight patients (BMI of less than 25

kg/m2). Whereas Wacharasint et al. [2013] analysed the e�ect of BMI on survival time,

in this project we simplify and use a binary indicator of 28-day survival as the outcome.

After data cleaning and adjustment for known confounders (Chapter 3), we �nd that an

overweight patient is estimated to have a 1.4-times higher odds of survival than a normal or

low weight patient with the same values of the confounding variables, and an obese patient

is estimated to have a 1.8-times higher odds of survival than a normal or low weight pa-

tient with the same confounders. The objective of this project is to re-analyse the VASST

data using methods for causal inference. The question is whether the observed association

between BMI on 28-day survival is causal or more likely due to confounding.

Instrumental variables (IVs) are used to control for unmeasured confounding. An IVG

is a variable that is (i) predictive of the exposure X, (ii) associated with the outcome Y

only through the association with X and (iii) is independent of unobserved confoundersU

[Smith and Hemani, 2014]. Figure 1.1, provides a graphical representation of instrumental

variable (IV) assumptions. The arrows indicate the direction of causal relationships between

variables. The absence of any arrow between two variables indicates that the variables are

not related. In addition to G, X, U and Y , the Figure includes observed confoundersO;

these are depicted as independent ofG, but such independence is not required by the models

we use in Chapter 2. In the Econometrics literature, the variables with no arrows pointing

towards them (such as G, U and O) are calledexogenousvariables, and those with arrows

pointing towards them (such as X and Y) are calledendogenousvariables. Thus, exogenous

variables are not in�uenced by other variables in the system of causal relationships and

endogenous variables are internal, being a�ected by the other variables.

Figure 1.1: Instrumental variable (IV) assumptions

IV methods infer a causal relationship between the endogenous exposure and the out-

come by studying the association between the exogenous instrumental variable and the

outcome. According to the diagram, the exposure-outcome association is confounded by

unmeasured confounders, but the IV-outcome association is not since there is no direct line

between IV and unmeasured confounders. Since IVs are associated with the exposure, but
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Chapter 2

Instrumental Variables: Models

and Inference

In this chapter we �rst describe models for the relationships between the variables in Figure

1.1, and then discuss the IV assumptions.

2.1 Models

As discussed in the Introduction, an association between the IV,G, and the outcome,

Y , implies a causal relationship between the exposure,X and Y . Thus, under the IV

assumptions, testing for aG-Y association is a test of the causal e�ect ofX on Y . However,

to estimate causal e�ects we must specify models for the exposure and outcome. We use

the general model of Terza et al. [2008], specialized to the case of a binary outcome and

a categorical exposure. In this general model, there is a �rst stage model for the mean

exposure as a function of the IVs and observed confounders, and a second stage model for

the mean outcome as a function of the exposure and all confounders. We discuss the second

stage model �rst, as it is the model of primary interest.

2.1.1 Second-stage Model

With a binary outcome Y , the second stage model is a logistic regression ofY on a vector of

covariatesZ that encodes information onX, O and U . Let O = (O1, . . . , Op) denote a row

vector of information on the observed covariates andX = (X1, X2) encode BMI status, with

X = (0, 0) for low or normal weight, X = (1, 0) for overweight and X = (0, 1) for obese.

The precise de�nition of U = (U1, U2) depends on the �rst stage model, and is described

below. Lastly, let Z = (O,X,U). Corresponding toZ is a column vectorβ = (βT
O, β

T
X , β

T
U )T

of parameters of lengthp + 2 + 2, where T denotes vector transpose. For convenience we

suppose thatO1 � 1 so that βO1 is an intercept term. The logistic model is for the log-odds
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To avoid population strati�cation, one can restrict analyses to ethnically homogeneous

groups, and apply correction methods using principal component analysis (PCA). Principal

components (PCs) obtained from PCA are orthogonal axes of variation that could represent

the population structure of individuals. The top few PCs can be used as covariates in the

analysis, in order to adjust for any existing population structure [Price et al., 2006]. An

alternative to PCA is multidimensional scaling (MDS; Mardia et al. [1979]).

2.2.3 Many Weak Instruments

An instrument is considered a weak instrument if it explains only a small proportion of vari-

ance in the exposure. Weak instruments provide less information about the causal e�ect.

Individual SNPs are weak predictors of BMI, since BMI is a complex trait. To improve

the strength of IV, multiple SNPs can be used as IVs [Palmer et al., 2011]. If multiple

SNPs cumulatively explain more variability in the exposure, they can jointly serve as better

instruments to improve the prediction of the exposure and its causal e�ect estimate on the

outcome. Thus, we use multiple SNPs as instruments to predict BMI.

Multiple instruments can be used as separate explanatory variables or they can be used

to construct a single allele score. However, instrumental variable estimates of causal ef-

fects could be biased when using many weak instruments as separate explanatory variables

[Davies et al., 2015]. Using many instruments as separate explanatory variables will tend

to over�t BMI in the �rst stage and hence predicted BMI will be very similar to observed

BMI. Thus we will essentially use observed BMI in the second stage, leading to confounded

estimates of the BMI e�ect. Davies et al. [2015] suggested that constructing a single allele

score such as unweighted or weighted Genetic Risk Score (GRS) can eliminate this bias.

Single Allele Scores

Each genetic variant is coded as 0, 1, or 2 depending on the combination of BMI-increasing

alleles.

The weighted genetic risk score (GRS) is calculated as the weighted sum of alleles of SNPs

associated with the exposure of interest, with weights equal to the published per-allele

e�ects for the exposure. For each individual i, the weighted genetic risk score is calculated

using an additive genetic model. The score is the product of individual's allele count for the

jth SNP and the weight for the e�ect of the jth SNP on the exposure, across all J SNPs.

WGRSi =
J∑

j=1
β̂j � allelecountij
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where,β̂j is the estimated weight of the e�ect of jth SNP on the exposure andallelecountij
is the allele count for the jth SNP of ith individual.

2.3 Bootstrap

The causal e�ect estimates of 2SRI method introduced by Terza et al. [2008] were shown to

be consistent; however, the estimated variances of the second-stage model are incorrect due

to inclusion of residuals rather than the actual error terms in the second-stage regression.

These estimated residuals are an extra source of variation that is not accounted for in the

standard error from the logistic regression. We can utilize the nonparametric bootstrap

to obtain approximately correct standard errors and con�dence intervals from two-stage

models [Guan, 2003].

The bootstrap is a resampling technique. Suppose that we have a random sample of size

n from an unknown distribution, and we want to make statistical inferences about param-

eters. In our case the parameters areβ = (βT
O, β

T
X , β

T
U )T of length p + 2 + 2. The method

is demonstrated as follows:

1. draw a random sample of size n with replacement from the data set;

2. �t the �rst-stage regression model to obtain p̂(W );

3. calculate the residuals,Û = X � p̂(W );

4. �t the second-stage model usingÛ as explanatory variables;

5. repeat steps 1-4 for N number of bootstrap replicates, and

6. empirical standard errors are the standard deviation of the empirical distribution of

the estimates and a 95% con�dence interval is given by the 2.5th and 97.5th percentiles

of the empirical distribution [Efron and Tibshirani, 1986].
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they were outliers, with respect to the �rst two principal coordinates (PCs) from multidi-

mensional scaling (MDS) [Mardia et al., 1979] based on the identity-by-state (IBS) distance

matrix [Purcell et al., 2007]. Further details related to MDS are described in section 3.2.1

and Appendix A. After data cleaning steps all the analyses were carried out with 476 Cau-

casian patients with complete data on 28-day survival and BMI, of whom 315 (66%) had

survived 28-days. In Table 3.1, we show the baseline characteristics of patients and the

outcome in each BMI category.

Table 3.1: Baseline characteristics among di�erent BMI categories

Characteristics BMI<25 kg/m2 BMI 25-29.9 kg/m2 BMI�30 kg/m2 p-value*
(n=172) (n=134) (n=170)

Demographics:
Age (years) 59.43 (17.37) 61.02 (15.71) 61.59 (14.50) 0.73
Gender (Female) 63 (36.6%) 45 (33.6%) 79 (46.5%) 0.04

Severity of Illness:
APACHEII score 25.53 (8.03) 26.34 (5.8) 26.70 (8.15) 0.11

D28 Survival:
Yes 105 (61%) 90 (67.2%) 120 (70.6%) 0.16

Continuous variables are reported as means with standard deviations (SD) and categorical
variables as frequencies with percentages.
* p-values for a nonparametric test of any association with BMI categories, as explained in
the text

We tested whether any of the covariates had a signi�cant association with BMI cate-

gories. The associations of baseline characteristics with BMI were tested using the Kruskal-

Wallis test for continuous data and the chi-square test for categorical data. Association tests

showed an association of gender with BMI (p=0.04) but no association with age (p=0.73)

or APACHE II score (p=0.11). We further investigated the association between BMI and

age. Figure A.1. in Appendix A shows BMI versus age, and suggests a quadratic e�ect of

age. We therefore tested for an association between age2 and the BMI categories and found

age2 was signi�cantly associated with BMI (p=0.005).

3.1 Observational Association

To study the observational association between BMI and 28-day survival, we carried out

logistic regression analyses considering BMI less than 25kg/m2 as the reference category

and two binary variables, indicating overweight and obese, respectively. We evaluated

the association of BMI and survival for both unadjusted and adjusted models for known

confounders age, gender and APACHE II score (Table 3.2 and Table 3.3).
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with minor allele frequency less than 5% and SNPs with more than 5% missing genotypes

were excluded. After these quality control steps, variants that showed a signi�cant deviation

(p<0.001) from Hardy-Weinberg equilibrium (HWE) were identi�ed and excluded from the

study.

MDS was performed to investigate the population structure of the genome data in

patients who self-reported as Caucasian. We identi�ed 17 outliers and these patients were

removed from the study. Outliers were detected as described in Appendix A Section A.1.

After removing outliers, MDS was re-applied to the reduced data and since further principal

coordinates did not reveal evidence of population structure, only the �rst two PCs were used

to adjust for any existing population strati�cation [Price et al., 2006]. We used the top two

MDS principal coordinates as covariates in the regression analyses as suggested by visual

inspection of the scree plot.

3.2.2 Construction of the single allele score

Genome-Wide Association Studies (GWAS) have identi�ed SNPs related to BMI at dif-

ferent chromosome locations. Our analyses were based on BMI-related SNPs identi�ed by

Speliotes et al. [2010] and Locke et al. [2015]. We used these established BMI-related SNPs

and their reported e�ects on BMI in our study. We extracted 47 BMI-related SNPs from

the VASST genotype data set. We found alternative SNPs, that can be used as proxies

(R2 > 0.8) for the SNPs that were not in our data using linkage disequilibrium (LD) and

were able to �nd 11 "LD proxy" SNPs. Altogether 58 BMI-related SNPs were extracted

from the VASST data and used as instruments for the IV analysis (Appendix A Section A.2).

Each SNP was coded 0, 1, or 2 depending on the combination of BMI-increasing alleles

each individual had. As we discussed in section 2.2.3, a single allele score was used as an

instrument to avoid the many-weak-instruments bias. We constructed the weighted genetic-

risk score (GRS) by multiplying the number of risk alleles for the corresponding e�ect sizes,

as reported by Speliotes et al. [2010] and Locke et al. [2015] (Table A.1 and Table A.2).

3.2.3 Estimation

We used the two-stage residual inclusion (2SRI) method explained in Section 2.1 to estimate

the causal e�ect of BMI on 28-day survival.

First-stage Model

For the �rst-stage, a multinomial logistic regression model for BMI categories on GRS was

�tted adjusting for known confounders and principal components. The normal/low weight
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category was considered as the baseline category. The coe�cients of the �rst-stage model

using GRS as the IV are shown in Table 3.4.

Table 3.4: Regression coe�cients of the �rst-stage model

BMI-Overweight BMI-Obese
Coe�cients Estimate 95% Con�dence Interval Estimate 95% Con�dence Interval
Intercept -1.4448 (-3.2073, 0.3175) -1.5702 (-3.1906, 0.0502)
GRS -0.2702 (-1.5587, 1.0182) 0.7219 (-0.5190, 1.9629)
Age -0.0220 (-1.2894, 1.2454) 0.1366 (-1.0970, 1.3702)
Age2 -0.6919 (-1.9753, 0.5914) -1.4602 (-2.7630, -0.1575)
Gender(Fe) -0.0669 (-0.5493, 0.4154) 0.4591 (0.0150, 0.9032)
APACHEII 0.6291 (-0.8979, 2.1563) 1.0454 (-0.3968, 2.4877)
PC1 0.8206 (-0.4077, 2.0491) 1.1173 (-0.0400, 2.2747)
PC2 1.3111 (-0.1366, 2.7589) 0.3803 (-0.8525, 1.6131)

A comparison of the �tted �rst-stage model to the null model suggested that the �tted

model is better than the null model, with p-value 0.01. However, a likelihood-ratio test

to compare the models with GRS and without GRS suggested that GRS is not signi�cant

(p=0.29). Therefore, we �nd that the GRS is a weak instrument. However, since the GRS

has been established as an instrument in other Mendelian randomization studies [Jokela

et al., 2012, Tyrrell et al., 2016], we proceed to the second-stage analysis with the results

of �rst-stage analysis.

Second-stage Model

Estimated residuals from the �rst-stage model were used as explanatory variables in the

second-stage model accounting for unmeasured confounders. For the second stage, a logistic

regression model for 28-day survival on BMI was �tted, adjusting for known confounders

and principal coordinates.

The second-stage model uses estimated variables as explanatory variables, therefore, es-

timated standard errors for the logistic regression model are considered incorrect. Second-

stage standard errors needed to be corrected for uncertainty in the estimated residuals. We

used the bootstrap, as described in Section 2.3, with 10,000 bootstrap replicates to account

for uncertainty in the estimated residuals and to correct standard errors.

13





Figure 3.1: Estimated e�ects of BMI on survival for di�erent estimation methods
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[Jokela et al., 2012, Tyrrell et al., 2016]. However, we note that the SNPs used to construct

the GRS do not explain very much variation in BMI. For example, the SNPs identi�ed by

Speliotes et al. [2010] only accounted for 1.45% of the variation in BMI and SNPs identi�ed

by Locke et al. [2015] only accounted for 2.7% of the variation in BMI. This suggests that

SNPs alone cannot explain a complex trait such as BMI fully. Furthermore, our sample

only included patients with Caucasian ethnicity; however, the genetic-risk score might be

di�erently associated with BMI in di�erent ethnic groups, so our �ndings may not generalize

to other ethnic groups directly. Our data only showed observational associations when we

treated BMI as an categorical variable. The �rst-stage model would have been a simpler

least squares regression if we had used BMI, or some normalizing transformation of BMI,

in the second-stage analysis. It is possible that the SNPs from the Speliotes et al. [2010]

and Locke et al. [2015] studies are more predictive of BMI than they are of overweight and

obesity status. However, we did not �nd an association between BMI and survival in the

observational analysis of the VASST data, and so we used BMI categories throughout.
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Appendix A

Data summaries and analysis
results

Figure A.1: Plot of BMI vs Age
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A.1 Multidimensional scaling (MDS)

Before conducting MDS, SNPs were pruned to remove clusters of highly correlated SNPs.
SNPs were pruned calculating the LD between each pair of SNPs and removing one of a
pair of SNPs if the LD was greater than 0.5. In this way we were able to obtain a subset of
SNPs in which all pairs have low correlations.

MDS was performed on the identity-by-state (IBS) distance matrix for these pruned data.
Outliers were detected as follows. We �rst computed pair-wise distances between observa-
tions based on the �rst 20 MDS PCs. Observations more than six standard deviations from
their nearest neighbour were declared outliers. For the covariate adjustment in the �rst-
and second-stage models, we selected the top two PCs based on the scree plot (Figure A.2).
Plink [Purcell et al., 2007] was used for prunning and MDS.

Figure A.2: Scree plot and Plot of the top 2 PCs used in the analysis
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Table A.1: SNPs associated with BMI and corresponding e�ect sizes

BMI related SNPs E�ect Allele E�ect Size

SNPs from Speliotes et. al.

rs2867125 C 0.31
rs571312 A 0.23
rs2815752 A 0.13
rs7359397 T 0.15
rs3817334 T 0.06
rs29941 G 0.06
rs543874 G 0.22
rs987237 G 0.13
rs7138803 A 0.12
rs2241423 G 0.13
rs2287019 C 0.15
rs1514175 A 0.07
rs13107325 T 0.19
rs10968576 G 0.11
rs13078807 G 0.10
rs206936 G 0.06

SNPs from Locke et. al.

rs11583200 C 0.02
rs3101336 C 0.035
rs12401738 A 0.022
rs2820292 C 0.02
rs10182181 G 0.03
rs11126666 A 0.015
rs1016287 T 0.028
rs11688816 G 0.02
rs1528435 T 0.02
rs7599312 G 0.017
rs6804842 G 0.02
rs16851483 T 0.056
rs11727676 T 0.027
7rs205262 G 0.022
rs1167827 G 0.023
rs4740619 T 0.017
rs6477694 C 0.016
rs1928295 T 0.021
rs10733682 A 0.018
rs11191560 C 0.027
rs12286929 G 0.017
rs11057405 G 0.026
rs12429545 A 0.038
rs7141420 T 0.029
rs3736485 A 0.016
rs758747 T 0.023
rs1000940 G 0.021
rs12940622 G 0.015
rs1808579 C 0.02
rs7243357 T 0.02
rs17724992 A 0.02
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