




Abstract

Alzheimer’s disease (AD) is a chronic neurodegenerative disease that causes memory loss
and decline in cognitive abilities; it is the sixth leading cause of death in the United States,
affecting an estimated 5 million Americans and 747,000 Canadians. A recent study of
AD pathogenesis (Szefer et al., 2017) used the RV coefficient to measure linear association
between multiple genetic variants and multiple measurements of structural changes in the
brain, using data from Alzheimer’s Disease Neuroimaging Initiative (ANDI). The authors
decomposed the RV coefficient into contributions from individual variants and displayed
these contributions graphically. In this project, we investigate the properties of such a
“contribution plot” in terms of an underlying linear model, and discuss estimation of the
components of the plot when the correlation signal may be sparse. The contribution plot is
applied to genomic and brain imaging data from the ADNI-1 study, and to data simulated
under various scenarios.

Keywords: Alzheimer’s disease; Alzheimer’s Disease Neuroimaging Initiative; RV coeffi-
cient; Genetic association; Multivariate linear association
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Chapter 2

Methods

In this chapter, we define the RV coefficient and its population counterpart, the multivari-
ate correlation coefficient � V . We also decompose � V into contributions from each SNP
marker, and study the form of such contributions under a multivariate linear model for
brain phenotypes given genomic data. Finally, we discuss shrinkage estimation that may
be useful when the correlation signal is sparse. By sparse we mean few non-zero pairwise
correlations between genotypes and phenotypes.

2.1 The Multivariate Correlation and RV Coefficients

Our development follows Section 2 of Josse and Holmes (2016). Let X = ( X 1; : : : ; X p)

denote a random vector of p genotypes and Y = ( Y1; : : : ; Yq) denote a random vector of q

phenotypes. Contrary to the convention in Statistics, we define these as row vectors. A
measure of population correlation between X and Y is (Escoufier, 1973)

� V (X; Y ) =

pX

k=1

qX

l=1

Cov2(X k ; Yl )

vu
u
t

pX

k=1

pX

l=1

Cov2(X k ; X l )
qX

k=1

qX

l=1

Cov2(Yk ; Yl )

(2.1)

where Cov() denotes population covariance. The coefficient � V may be viewed as an exten-
sion of the squared population correlation to the multivariate setting. It can be shown that
0 � � V � 1. This and other properties of � V are discussed in Appendix B.

Suppose we have n independent and identically distributed realizations of X and Y ,
arranged row-wise as column centred data matrices X(n � p) and Y(n � q), respectively.
Let X �k denote the kth column of X; i.e., the vector of genotypes for marker k. Similarly,
let Y�l denote the lth column of Y; i.e., the vector of measurements for phenotype l . The
multivariate correlation coefficient in equation (2.1) can be estimated by the RV coeffi-

3





multiple regression model

Y = X B + E (2.5)

where B is a p � q matrix of regression parameters, and E is a row vector of q error
terms assumed to be independent of X . The errors are assumed to follow a multivariate
normal distribution, MV N (0; � q� q) where � q� q is the covariance matrix. Component-wise,
equation (2.5) is

Yl =
pX

k0=1

� k0l X k0 + E l (2.6)

for 1 � l � q.

Using equation (2.6), and the fact that Cov(X k ; E l ) = 0 for all k and l , by independence
of X and E , we can rewrite

Cov(X k ; Yl ) = Cov(X k ;
pX

k0=1

� k0l X k0 + E l )

=
pX

k0=1

� k0l Cov(X k ; X k0) + Cov(X k ; E l )

=
pX

k0=1

� k0l Cov(X k ; X k0)

= � kl Var(X k ) +
X

k06= k

� k0l Cov(X k ; X k0); (2.7)

where Var() denotes variance, and hence

Ck =
qX

l=1

Cov2(X k ; Yl )

=
qX

l=1

8
<

:
� kl Var(X k ) +

X

k06= k

� k0l Cov(X k ; X k0)

9
=

;

2

: (2.8)

Equation (2.8) shows that Ck depends on not only the regression coefficients, but also
the variance of X k and the covariances between X k and the other components of X . Some
simplification of the contributions is obtained by scaling each X k by its standard deviation,
so that the variance terms become one and covariances become correlations. In what follows
we assume such scaling and use the notation SD() for population standard deviation, sd() for
sample standard deviation, Cor() for population correlation and cor() for sample correlation.
Dividing both sides of equation (2.6) by SD(Yl ), and defining Y �

l = Yl =SD(Yl ) and X �
k =
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X k=SD(



to a modified RV coefficient

RV (X� ; Y� j� ) /
pX

k=1

qX

l=1

cor2� (X �
:k ; Y �

:l ) (2.13)

for � � 1. Raising correlations to powers larger than 2 has the effect of differentially
shrinking all estimates toward zero, with estimates near zero shrunken more than those
near one. Independently, Xu et al. (2017) arrived at the same modified RV coefficient
in the context of testing the null hypothesis H0 : � V (X � ; Y � ) = 0 versus the alternative
hypothesis H1 : � V (X � ; Y � ) > 0. They suggest the sum of powered correlation (SPC) test,
in which RV (X� ; Y� j� ) is employed as a test statistic and its significance is assessed with
a Monte Carlo permutation test. Xu et al. (2017) also suggest an adaptive sum of powered
correlation (aSPC) test, in which the test statistic is a minimum p-value for the SPC test
over a grid of powers. Though testing is not the focus of this project, we make use of
their minimum-p-value idea to select the power � . In particular, our contribution plot is
of contributions Ĉ �

k (� ) for the power � that minimizes the p-value of the test based on
RV (X� ; Y� j� ), for values of � on a grid. In our study we chose � = 1 ; 2; 3 or 4.

2.3.1 Example

In this subsection, we present contribution plots using standardized (X� and Y� ) data sets.
The vertical axis of the contribution plot is Ĉ � (� ) where � is either 1 or the optimal value
that minimizes the p-value of the RV (X� ; Y� j� ) test based on 5,000 permutations. The
horizontal axis represents SNPs of the ADNI-1 genomic data sorted by chromosome number
and base-pair location. A multivariate multiple regression model, Y= XB+E, is used to
simulate a matrix of responses. The description of each component is as follows.

ˆ Xn� p is the matrix of the ADNI-1 genomic data on 493 SNPs (p) in 179 CN subjects
(n).

ˆ Yn� q is a matrix of simulated response variables.

ˆ En� q is an error matrix generated from MV N (0; I q� q).

ˆ Bp� q is a coefficient matrix.

The choice of an identity matrix for the covariance of the error terms is for simplicity.
The number of response variables (q) is set to be 56 to generate neuroimaging data of 56
brain regions for simulation. We set B30;1 = 1 and B70;10 = 1 , to designate the 30th and
70th SNPs as causal markers on the 1st and 10th brain regions, respectively, and all other
B i;j = 0 .
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Chapter 3

Application

In this chapter we apply the contribution plot to the ADNI-1 data set mentioned in the
Introduction. We first describe how these data were obtained and what their features are.

3.1 Data Description

3.1.1 ADNI-1 Cohort Study

Both SNP and brain image data considered in this analysis were from the ADNI-1 study
that was run from 2004 to 2009. One of the goals of the ADNI study is to identify biomarkers
that predict AD. Our focus is on the 200 CN subjects collected in this study. The rationale
for studying the CN subjects is that we are interested in genetic variation that predicts
structural changes in the brain before subjects experience memory loss. Further details
about the ADNI-1 study design is available on the ADNI website http://adni.loni.usc.

edu/study-design/ .

3.1.2 Genotype Data

Genotypes were measured as described in Saykin et al. (2010) and were subjected to quality
control and imputation to fill in missing values as described in Szefer (2014). After data
processing, 179 subjects with data on 493 SNPs in 33 genes remained for analysis. Table
3.1 gives a summary of gene names and the numbers of SNPs from each gene. SNP names
are given in Appendix C.

3.1.3 Imaging Phenotype Data

The phenotypes were derived from baseline MRI scans taken for the ADNI-1 study for self-
reported non-Hispanic white subjects. The MRI measurements were of volumes or cortical

9
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Chromosome Gene No. Chromosome Gene No.
1 CHRNB2 1 10 SORCS1 94
1 CR1 15 10 TFAM 6
1 ECE1 39 11 GAB2 19
1 MTHFR 10 11 PICALM 23
1 TF 3 11 SORL1 33
2 BIN1 12 15 ADAM10 19
2 IL1A 2 17 ACE 7
2 IL1B 1 17 GRN 1
6 NEDD9 69 17 THRA 3
6 PGBD1 6 17 TNK1 3
6 TNF 1 19 APOE 1
8 CLU 2 19 EXOC3L2 2
9 DAPK1 82 19 GAPDHS 3
9 IL33 14 19 LDLR 9
10 CALHM1 3 20 CST3 1
10 CH25H 1 20 PRNP 4
10 ENTPD7 4 Total 493

Table 3.1: Summary of the number of SNPs in analyzed genes.

thicknesses of 56 brain regions (Table 3.2), adjusted for covariates such as age, gender,
education level, handedness and baseline intracranial volume (Wang et al., 2011).
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Phenotype ID Measurement Cerebral region

AmygVol Volume Amygdala

CerebCtx Volume Cerebral cortex

CerebWM Volume Cerebral white matter

HippVol Volume Hippocampus

InfLatVent Volume Inferior lateral ventricle

LatVent Volume Lateral ventricle

EntCtx Thickness Entorhinal cortex

Fusiform Thickness Fusiform gyrus

InfParietal Thickness Inferior parietal gyrus

InfTemporal Thickness Inferior temporal gyrus

MidTemporal Thickness Niddle temporal gyrus

Parahipp Thickness Parahippocampal gyrus

PostCing Thickness Posterior cingulate

Postcentral Thickness Postcentral gyrus

Precentral Thickness Precentral gyurs

Precuneus Thickness Precuneus

SupFrontal Thickness Superior frontal gyrus

SupParietal Thickness Superior parietal gyurs

SupTemporal Thickness Superior temporal gyrus

Supramarg Thickness Supramarginal gyrus

TemporalPole Thickness Temporal pole

MeanCing Mean thickness Caudal anterior cingulate, isthmus cingulate, posterior cingu-

late, and rostral anterior cingulate

MeanFront Mean thickness Caudal midfrontal, rostral midfrontal, superior frontal, lateral

orbitofrontal, and medial orbitofrontal gyri and frontal pole

MeanLatTemp Mean thickness Inferior temporal, middle temporal, and superior temporal gyri

MeanMedTemp Mean thickness Fusiform, parahippocampal, and lingual gyri, temporal pole and

transverse temporal pole

MeanPar Mean thickness Inferior and superior parietal gyri, supramarginal gyrus, and

precuneus

MeanSensMotor Mean thickness Precentral and postcentral gyri

MeanTemp Mean thickness Inferior temporal, middle temporal, superior temporal, fusiform,

parahippocampal, and lingual gyri, temporal pole and trans-

verse temporal pole

Table 3.2: Phenotype IDs and descriptions of 28 brain regions from a hemisphere, from
Table 2.1 of Szefer (2014). Baseline structural MRI measurements of a total of 56 (= 28 �
2) regions from left and right hemispheres were estimated.

SPC (� =1) SPC (� =2) SPC (� =3) SPC (� =4) aSPC
P-value 0.6834 0.3234 0.0624 0.0080 0.0154

Table 3.3: Summary of the p-values of SPCs with � = 1 ; 2; 3; or 4, and the adaptive SPC
test.
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3.2 Contribution Plot for ADNI-1 Data

We initially standardize the genomic data of 493 SNPs and the neuroimaging data of 56
brain regions by subtracting column-wise means and dividing by column-wise SDs. The
adaptive SPC test (Xu et al., 2017) of association between the genetic and phenotypic
variables gives a p-value of 0.0154. The contribution plot may therefore be viewed as a
post hoc investigation of the significant overall association. To select the power � for the
contribution plot we calculate p-values for SPC tests with � = 1 , 2, 3 and 4 and find a
minimum at � = 4 ; see Table 3.3.

Figure 3.1: Contribution plot of standardized genomic data of 493 SNPs and 56 brain
regions with � = 4 . The horizontal line indicates the 95th percentile of the maximum
contributions under the permutation null distribution.

Figure 3.1 shows the contribution plot with � = 4 . SNPs on the x-axis are sorted
by chromosome number and base-pair location. The spike above the permutation-based
threshold is a strong signal of a linear association that comes from the SNP rs16871157
within the NEDD9 gene on chromosome 6.

We can further decompose the contribution of rs16871157 by brain region. The results
are shown in Figure 3.2 where the y-axis represents the individual sample correlation to the
power of 8 between rs16871157 and the 56 brain regions. Comparing the two panels of the
figure, we can see that in general the correlations in the right hemisphere are stronger than
those in the left hemisphere, but that the patterns of associations are very similar. Overall,
it appears that rs16871157 is associated with measures of cortical thickness, particularly
in the temporal lobe of the brain (phenotype MeanTemp). The temporal lobe is involved
in processing sensory input and memory.

Violin plots of the estimated MeanTemp and MeanLatTemp thickness by rs16871157
genotypes are shown in Figure 3.3 for both the left and right hemisphere. In both hemi-
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spheres the distribution of adjusted cortical thickness in CN subjects with the variant allele
at rs16871157 is shifted towards negative values compared to the distribution for CN sub-
jects with two copies of the wild type allele, which is centred at zero. Thus, the presence of
the variant allele at rs16871157 is associated with reduced cortical thickness in CN subjects.

3.3 Discussion of rs16871157 and NEDD9

rs16871157 is in an intron of the NEDD9 gene and has no known function. Our analysis
suggests that presence of the variant allele at rs16871157 is associated with reduced cortical
thickness in CN subjects. Reduced cortical thickness is associated with symptom severity
in MCI and early AD patients, and has been observed in CN patients with amyloid binding
(Dickerson et al., 2008).

NEDD9 stands for Neural Precursor Cell Expressed, Developmentally Down-Regulated
9. Much of the research to date on NEDD9 has focussed on the association between
variation in the gene and different cancers (e.g., Izumchenko et al., 2009), but, as the name
suggests, the protein product of NEDD9 is also involved in brain development. For example
Vogel et al. (2009) found that the NEDD9 protein plays a role in neuronal differentiation.
In AD research, the SNP rs760678 in NEDD9 was found to be associated with late-onset
AD (Wang et al., 2012). However, we note that the phenotypes associated with rs760678
and rs16871157 are quite different (late-onset AD versus baseline cortical thickness) and
the two SNPs are in linkage equilibrium in Caucasian populations (estimated R2 < 0:01 in
Caucasian populations according to the online tool LDlink; Machiela and Chanock, 2015).
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Figure 3.2: Contributions of rs16871157 to brain regions in the left hemisphere (upper)
and the right hemisphere (lower). The horizontal line indicates the 95th percentile of the
maximum contributions under the permutation null distribution.
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Figure 3.3: Violin plots of the distribution of the mean cortical thickness changes in Mean-
Temp (upper) and MeanLatTemp (lower) for each genotype of rs16871157. The left and
right plots respectively represent the left and right hemispheres. The relative frequency of
the minor allele in the CN subjects was 11.45%. Violin plots for genotype = 2 were not
done because there is only one CN subject who is homozygous for the minor allele.

15



Chapter 4

Contribution Plots for Simulated
Data Sets

In Chapter 2 we presented a simple example of the contribution plot using the ADNI-1
genetic data and simulated response variables. In this chapter, we display contribution
plots for six additional simulated data sets. Our goal is to investigate the behaviour of
the contribution plot under (i) different forms of dependence between explanatory variables
and between response variables, and (ii) different numbers of explanatory and response
variables.

4.1 Description of Simulation Configurations

This section describes the six different simulation settings. In all cases, data are simulated
from the multivariate multiple regression model Y= XB+E in which:

ˆ Xn� p is a matrix of explanatory variables generated from MV N (0; � p� p) where n =

100 is the sample size,

ˆ Yn� q is a matrix of response variables,

ˆ En� q is an error matrix generated from MV N (0; � q� q), and

ˆ Bp� q is a coefficient matrix.

The simulation parameters are p, q, � p� p, � q� q, and B. We first give a brief overview of the
different simulation settings, labelled setting 0, setting 1, ..., setting 5. In setting 0, data are
simulated under the null hypothesis of no association between X and Y; i.e., B ij = 0 for all i

and j . In settings 1 through 5 data are simulated under a sparse alternative, with B30;1 = 1 ,
B70;10 = 1 and all other B ij = 0 . Simulation setting 1 specifies dependent explanatory
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variables and setting 2 specifies dependent response variables. Simulation setting 3 specifies
a large number of explanatory variables and setting 4 specifies a large number of response
variables. Finally, setting 5 incorporates the most challenging features of settings 1 through
4: dependence among both explanatory and response variables, and large numbers of both
explanatory and response variables. Further details about the simulation settings are as
follows.

Setting 0 : No association.

ˆ n = 100, p = 130, and q = 25

ˆ � p� p = I p� p

ˆ � q� q = I q� q

ˆ B = 0

Setting 1 : The 25th to 35th X variables are correlated.

ˆ n = 100, p = 130, and q = 25

ˆ Letting � p� p(i; j ) be the (i; j )th entry of the matrix,

� p� p(i; j )=0.9 (i 6= j; 25 � i; j � 35)

All diagonal entries of � p� p are 1, and the other entries are 0.

ˆ � q� q = I q� q

ˆ B (30; 1) = B (70; 10) = 1

Setting 2 : The 1st to 15th Y variables are correlated.

ˆ n = 100, p = 130, and q = 25

ˆ � p� p = I p� p

ˆ � q� q(i; j )=0.9 (i 6= j; 1 � i; j � 15)

All diagonal entries of � q� q are 1, and the other entries are 0.

ˆ B (30; 1) = B (70; 10) = 1

Setting 3 : There are 20 times more X variables.

ˆ n = 100, p = 2600, and q = 25

17



ˆ � p� p = I p� p

ˆ � q� q = I q� q

ˆ B (30; 1) = B (70; 10) = 1

Setting 4 : There are 20 times more Y variables.

ˆ n = 100, p = 130, and q = 500

ˆ � p� p = I p� p

ˆ � q� q = I q� q

ˆ B (30; 1) = B (70; 10) = 1

Setting 5 : All settings from 1 to 4 are adopted.

ˆ n = 100, p = 2600, and q = 500

ˆ � p� p(i; j )=0.9 (i 6= j; 25 � i; j � 35)

The other diagonal entries of � p� p are 1, and the other entries are 0.

ˆ � q� q(i; j )=0.9 (i 6= j; 1 � i; j � 15)

The other diagonal entries of � q� q are 1, and the other entries are 0.

ˆ B (30; 1) = B (70; 10) = 1

4.2 Analyses of Simulated Data Sets

Throughout, we standardize the explanatory variables and response variables and use X�

and Y� to denote the standardized data matrices. The aSPC test is applied to each stan-





Setting 1 : The 25th to 35th X variables are correlated.

The p-value for the aSPC test on this simulated data set is 0.0006, reflecting the true
association between the 30th explanatory variable, X 30, and the first response variable, Y1,
and between the 70th explanatory variable, X 70, and the 10th response variable, Y10. The
contribution plots are shown in Figure 4.2. The broad peak of signal toward the left end
of the horizontal axes of the plots reflects the truly-associated X 30. In addition to a signal
at X 30, other explanatory variables that are correlated with X 30 have comparably-sized
contributions, as predicted by equation (2.10). In particular, from equation (2.10),

C �
i =

25X

l=1

8
<

:
� �

il +
X

k06= i

� �
k0l Cor(X �

i ; X �
k0)

9
=

;

2

= f Cor(X �
i ; X �

30)g2,

because � �
il = 0 for l = 1 ; : : : ; 25 and � �

k0l = 0 except when k0 = 30 and l = 1 , in which
case � �

30;1 = 1 : The contributions of X i that are correlated with X 30 should be roughly
proportional to the squared correlation between X i and X 30 when � = 1 . Indeed, Ĉ �

30(� =

1) = 0 :7517, Ĉ �
28(� = 1) = 0 :5619, and cor(X :30; X :28) = 0 :8837, so that 0:5619� 0:5870(=

0:7517� (0:8837)2). The narrow peak near the middle of the horizontal axes reflects the
truly-associated X 70, which is not correlated with any of the other explanatory variables.
There are two take-away messages here: (i) The contribution plots can identify the true
signals, and (ii) correlation between explanatory variables can widen the peak signal.

Figure 4.2: Simulation results of Setting 1 (B30;1=B70;10=1, p=130, q=25, � p� p6= I p� p,
� q� q=I q� q). The horizontal line indicates the 95th percentile of the maximum contributions
under the permutation null distribution.
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Setting 5 : All settings from 1 to 4 are adopted.

The p-value for the aSPC test on this simulated data set is 0.0008. The contribution

plots, shown in Figure 4.7, illustrate all of the main features of the previous examples.

Correlation between a truly-associated explanatory variable and other explanatory vari-

ables widens the peak signal aroundX 30. Correlation between response variables increases

the variance of the contributions, which can obscure true associations, but this increased

variance can be mitigated by raising squared correlations to higher powers.

Figure 4.7: Simulation results of Setting 5 (B30;1= B70;10= 1, p= 2600, q= 500, � p� p6= I p� p,
� q� q6= I q� q). The horizontal line indicates the 95th percentile of the maximum contributions
under the permutation null distribution.
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Chapter 5

Conclusion

5.1 Project Summary

Measures of multivariate correlation are used in fields such as neurogenetics to find an
association between a multivariate phenotype and a vector of explanatory variables. After
an association is found, it may be of interest to identify the explanatory variables that
are primarily responsible for the signal. In this project we have developed such a post hoc
procedure and applied it to data from the ADNI-1 study. The contribution plot decomposes
the RV coefficient into contributions from each explanatory variable and displays them
graphically. A significance threshold for the maximum contribution under no association,
determined by a permutation procedure, may be added to the plot. Signals above the
threshold are considered noteworthy.

Chapter 2 introduced a population measure of correlation, � V , and its estimator, the
RV coefficient. Contributions to the population correlation were defined as sums of squared
population covariances between individual explanatory variables (genotypes) and response
variables (phenotypes). Formulas for these contributions were derived under a multivariate
regression model and were seen to simplify if the response and explanatory variables are
standardized, in which case covariances become correlations. We then discussed the esti-
mation when the correlation signal is sparse and the idea of raising squared correlations
to a power � . A method for selecting � was described, motivated by the adaptive sum of
powered correlations (aSPC) test (Xu et al., 2017), and the approach was illustrated on a
simulated data set.

In Chapter 3, we applied the methods of Chapter 2 to the ADNI-1 data. The aSPC
test for correlation between SNP genotypes and phenotypes of brain regions of interest
was significant (p=0.0154). The contribution plot suggested a sparse signal, driven by a
single SNP, rs16871157, within the NEDD9 gene on chromosome 6. Further investigation
suggested that carriers of the variant allele at rs16871157 had a tendency toward reduced
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Appendix A

Alternative RV Coefficient Forms

This appendix derives the connections between three different forms of the RV coefficient:
(i) in terms of inner-product matrices XXT and YYT , (ii) in terms of squared covariances,
as in equation (2.2) (repeated below as equation A.2), and (iii) in terms of Gower-centred
distance matrices (defined below). We start with simple derivations that illustrate the
connections between the forms of the RV coefficient, assuming all subjects are weighted
equally. We then extend these results to unequally weighted subjects, using more abstract
notation and results from linear algebra.

A.1 Equally-Weighted Subjects

Let X(n � p) and Y(n � q) denote data matrices in which each column has been centred by
its ordinary arithmetic mean. Let X i � and Yi � be the i th rows of X and Y, respectively and
let x ij and yij denote the (i; j )th elements of X and Y, respectively. Due to the column
centring,

P n
i =1 x ij = 0 .

A.1.1 Inner Products and Squared Covariances

The inner-product form of the RV coefficient is

RV (X; Y) =
tr (XXT YYT )

q
tr (XXT XXT )tr (YYT YYT )

(A.1)

and the squared covariance form is
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Similarly, averaging over index i yields

�dX
�j =

pX

k=1

x2
jk +

1
n

pX

i =1

pX

k=1

x2
ik

and averaging over i and j yields

�dX
�� =

2
n

nX

j =1

pX

k=1

x2
jk :

Rearranging these expressions gives
pX

k=1

x2
ik = �dX

i � � �dX
�� =2 and

pX

k=1

x2
jk = �dX

�j � �dX
�� =2:

Substituting into (A.5) and further rearranging leads to

pX

k=1

x ik x jk = � (dX
ij � �dX

i � � �dX
�j + �dX

�� )=2 = � � X
ij =2; as desired.

A.2 Unequally-Weighted Subjects

We can generalize the RV coefficient for unequally weighted subjects with weights w1; : : : ; wn

that sum to one. Such an approach might be used to correct for sampling bias if sampling
is stratified and some population subgroups are oversampled relative to others. Both X and
Y are now column centred by weighted averages, so that, for example,

P n
i =1 wi x ik = 0 for

all k = 1 ; : : : ; p.

Of the three expressions for the RV coefficient, the squared covariance form is the most
obvious for generalization. We assign weights to sample covariances and variances; e.g.,
cov(X :k ; Y:l ) =

P n
i =1 wi x ik yil . The RV coefficient becomes

RV (X; Y) =

pX

k=1

qX

l=1

( nX

i =1

wi x ik yil

) 2

vu
u
t

pX

k=1

pX

l=1

( nX

i =1

wi x ik x il

) 2 qX

k=1

qX

l=1

( nX

i =1

wi yik yil

) 2

An implementation of this formula in R is:

RV.cov = function ( X, Y, wts){
S = cov.wt ( cbind (X,Y), wt=wts) $cov
p = ncol (X); q = ncol (Y)
SXX= S[1: p, 1: p]
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## user system elapsed
## 0.64 0.06 0.70

val1

## [1] 0.7252929

system.time ({val2 = RV.dist (X,Y,wts)})

## user system elapsed
## 0.06 0.00 0.06

val2

## [1] 0.7252929
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B.2 Properties of RV

RV (X; Y) has the same properties as those listed above for � V .

B.3 Dependence of the RV Coefficient on Sample Size and
Dimension

Despite the reasonable geometrical interpretation, it has been pointed out that the RV
coefficient has underlying problems triggered by two factors, sample size and dimensionality
of data. Consequently, the RV coefficient should not be used directly as a measure of linear
association between two data matrices.

B.3.1 Sensitivity to Sample Size

The main defect of the RV coefficient is its dependence on sample size. Such dependence is
evident in the approximation (Smilde et al., 2008):

RV (X; Y) �
pq

p
f p2 + ( n + 1) pgf q2 + ( n + 1) qg

; (B.2)

and in the first moment of the RV coefficient under the the permutation distribution (Kazi-
Aoual et al., 1995):

E(RV ) =
p

� X � � Y

n � 1
where � X =

(tr (XT X))2

tr (XT X)2
: (B.3)

Figure B.1 visualizes the change of the RV coefficient by sample size while the total number
of variables remains 200. The left-hand plot shows the mean, 95% confidence interval,
and the RV coefficient approximation of equation (B.2) under the null hypothesis of no
association. As the sample size increases, the RV coefficient monotonically decreases. The
right-hand plot illustrates that the vertical location of the approximation line varies at
different proportions of the number of variables in X and Y.

B.3.2 Sensitivity to Dimensionality

The RV coefficient is also affected by increases in the dimensions p and q, holding the sample
size n fixed. The dependence on p and q is not obvious from (B.2) and (B.3). Adams (2016)
showed an upward trend in the RV coefficient as the total number of variables increases.
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Figure B.1: RV coefficient with different sample sizes.

Figure B.2: RV coefficient with the different numbers of variables.
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Figure B.4: Pearson type III approximation and Normal approximation of the standardized
RV coefficient.
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Appendix C

Names of SNPs in analyzed genes

Chr Gene SNPs
1 CHRNB2 rs3811450

CR1 rs10127904, rs10779339, rs11117959, rs11118131, rs12734030, rs1408077, rs1571344,
rs2025935, rs3737002, rs3818361, rs4310446, rs650877, rs6691117, rs6701713,
rs677066

ECE1 rs1076669, rs10916958, rs10916959, rs11590928, rs12562197, rs12756690, rs12758257,
rs212515, rs212524, rs212525, rs212531, rs212534, rs212539, rs212540, rs212541,
rs213010, rs213022, rs213023, rs213025, rs213028, rs213037, rs213039, rs213045,
rs213052, rs213058, rs2282714, rs2282715, rs2745251, rs3026841, rs3026845,
rs3026868, rs3026883, rs3026886, rs3026913, rs4654916, rs4654918, rs471359, rs84853,
rs9426748

MTHFR rs1476413, rs1572151, rs17367504, rs1801131, rs1801133, rs2184226, rs3737964,
rs4846048, rs6541003, rs9651118

TF rs696619, rs762484, rs762485
2 BIN1 rs10194375, rs10200967, rs11678252, rs13426725, rs13430599, rs17014873, rs17014923,

rs2276575, rs6709337, rs749008, rs873270, rs880436
IL1A rs17561, rs3783526
IL1B rs1143634

6 NEDD9 rs1009667, rs1012503, rs1018374, rs10484451, rs10484453, rs10947009, rs10947021,
rs11757904, rs11964334, rs11967989, rs12209631, rs1465131, rs1475345, rs16871072,
rs16871157, rs16871166, rs16871236, rs16871247, rs16871253, rs17496723, rs1883235,
rs1883238, rs2018334, rs2025676, rs2025677, rs2064111, rs2064112, rs2072834,
rs2142739, rs2142741, rs2142742, rs2146342, rs2179179, rs2182335, rs2182337,
rs2327389, rs2327394, rs2950, rs3734404, rs3798729, rs3798731, rs4713379, rs4713432,
rs6457131, rs6457160, rs6457200, rs6905101, rs6908326, rs6912916, rs744970,
rs760680, rs7738900, rs7741863, rs7748486, rs7769173, rs7775262, rs9295823,
rs9295828, rs9296000, rs9348868, rs9368621, rs9380149, rs9393992, rs9393994,
rs943008, rs9468690, rs9468793, rs967473, rs9791189

PGBD1 rs1150724, rs13211507, rs1997660, rs2281043, rs2743554, rs9461448
TNF rs3093662

8 CLU rs11136000, rs9314349
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Table C.1: Names of 493 SNPs in analyzed genes

47


	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Methods
	The Multivariate Correlation and RV Coefficients
	Contributions to the RV Coefficient
	Estimation, Sparse Correlation and Sum of Powered Correlations
	Example


	Application
	Data Description
	ADNI-1 Cohort Study
	Genotype Data
	Imaging Phenotype Data

	Contribution Plot for ADNI-1 Data
	Discussion of rs16871157 and NEDD9

	Contribution Plots for Simulated Data Sets
	Description of Simulation Configurations
	Analyses of Simulated Data Sets
	Results
	Summary of Simulated Example Data Analyses


	Conclusion
	Project Summary
	Limitations and Future Work

	Bibliography
	Appendix Alternative RV Coefficient Forms
	Equally-Weighted Subjects
	Inner Products and Squared Covariances
	Inner Products and Gower-Centred Distances

	Unequally-Weighted Subjects
	Testing the Distance-Based Formula


	Appendix Properties of the Multivariate Correlation and RV Coefficients
	Properties of V
	Properties of RV
	Dependence of the RV Coefficient on Sample Size and Dimension
	Sensitivity to Sample Size
	Sensitivity to Dimensionality

	Hypothesis Test
	Permutation Distribution
	Pearson Type III Distribution


	Appendix Names of SNPs in analyzed genes

