Students requiring accommodations as a result of disability must contact the Centre for Students with Disabilities 778-782-3112 or csdo@sfu.ca

Instructor: Dr. Boxin Tang

Prerequisite:

STAT 285 and MATH 251.

Textbook:

Applied Linear Regression (3rd ed.) by Sanford Weisberg. Publisher: Wiley

Calendar Description:

Theory and application of linear regression. Normal distribution theory. Hypothesis tests and confidence intervals. Model selection. Model diagnostics. Introduction to weighted least squares and generalized linear models. **Quantitative.**

Outline:

- 1. Linear models: Definition, simple and multiple linear regression models, ANOVA models. Incorporating different types of predictor variables and their interactions in the model. Matrix notation.
- 2. Estimation methods: Least-squares, maximum likelihood. Algebraic and geometrical interpretations.
- 3. Properties of least-squares estimators: Mean, variance, and covariance of least-squares estimators. Expected value of residual sum of squares.
- 4. Diagnostic tools: Residual plots, multicollinearity, outliers, influential observations, goodness-of-fit tests.
- 5. Inference: Interpretation of the parameter estimates. Hypothesis tests, p-values, confidence intervals, prediction and intervals. Inferences for a linear function of the regression coefficients.
- 6. General Linear Hypotheses: Additional sum of squares principle. Test for lack of fit based on the pure error sum of squares.
- 7. Model selection: Effect of the question of interest on the choice of model, difficulties in model selection due to multicollinearity. Automatic variable selection procedures, warnings and recommendations.
- 8. Special methods for ANOVA models: Linear contrasts. Factor and interaction plots. Multiple comparison procedures.
- 9. Introduction to weighted least-squares and generalized linear models.

Grading Scheme:

Homework 20 % Midterm 30%