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1 INTRODUCTION

Assessing the abundance of organisms is a basic but crucial task for management
biologists. Depletion (or ‘removal’) sampling is one approach widely used to estimate
abundance, and involves the sequential removal of individuals from a defined area
(Leslie and Davis 1939; Moran 1951). The pattern of decreasing catches over removal
passes is used to infer both the total population size and the catchability (the probability
of an individual being captured on a given pass). There is extensive theoretical and
practical literature on the merits and limitations of depletion sampling, with on-going
development of the statistical models used to estimate abundance and catchability from
the catch series. Classic estimators assume equal catchability across sampled individuals
and across passes (Zippin 1956, 1958; Carle and Strub 1978), but it is known that this
assumption is often violated (Bohlin and Sundstrom 1977; Riley and Fausch 1992;
Peterson et al. 2004). If constant catchability is incorrectly assumed, population
estimates are negatively biased, and calculated confidence bounds indicate unwarranted
precision. A variety of models have been developed that explicitly consider non-constant
catchability (e.g. Schnute 1983, Wang and Loneragan 1996, Méntyniemi et al. 2005).
Although these models may improve performance under certain conditions, there is a

lack of rigorous evaluation of performance characteristics.

Depletion sampling is a common assessment technique for freshwater fish
populations, particularly stream resident juvenile salmonids (Bohlin et al. 1989; Guy and

Brown 2007). Results are often used in an experimental context to measure response to



treatment, or in stock assessment programs, to track juvenile abundance over time. In
both contexts, it is crucial that estimators avoid bias and avoid overestimating precision,
because these errors may lead to incorrect conclusions when comparing results between
treatments or over time. If the bias of an estimator is constant across sites, time and
treatments, this might not affect attempts to detect differences in abundance. However,
differences in estimator behaviour between sites, over time, or between treatments may
affect tests for change over time or due to experimental treatment. Similarly, overstated

confidence in results may lead to an erroneous conclusion of difference.



Depletion sampling via electrofishing has been used to monitor juvenile salmonid
response to flow over two experimental treatments between 1996 and the present. The
intent is to infer a relationship between river discharge and juvenile salmonid
productivity. The absence of supplementary information means that assessment of the
accuracy and precision of abundance estimates must rely on the three and four pass
removal series. | examined the extent to which trends in catchability, and therefore in the

bias and precision of abundance



2 EFFECTS OF CATCHABILITY VARIATION ON
PERFORMANCE OF DEPLETION ESTIMATORS

2.1 Introduction

Estimating the abundance of organisms within a study area is fundamental to
ecology and field biology. In freshwater fisheries assessment, depletion sampling using
electrofishing is widely applied to estimate the total population size within a site (Otis et

al. 1978; Peterson et al. 2004). Fish captured during consecutive events are removed, and



Depletion models can be applied to both open and closed populations, but are
simplest to use where the population is closed to immigration, emigration and
recruitment, and when all mortality can be attributed to experimental removals or fishing
(Hilborn and Walters 1992). In small streams, it is reasonable to assume that these
conditions hold, especially for the net-enclosed sites commonly used to estimate juvenile
salmonid abundance. For such sites, depletion estimators depend on distinct, consecutive
fishing events (hereafter called “passes”), often using an electrofisher. Although not
specifically required (Leslie and Davis 1939; DeLury 1947), depletion estimators often
assume equal effort on each pass. The simplest depletion model defines the vector of
catches C; as a function of the initial abundance N and the probability of capture, or

“catchability” q;, i.e.,
C,=q(N-T,) i=1 ..,k 2.1)

where T; is the cumulative catch to pass i, and k the total number of depletion passes
(Leslie and Davis 1939; Moran 1951). If catchability is assumed constant (qg; = q), the
catches can be considered as a regression of catch against cumulative catch up to the
previous pass (Figure 2.1). The x-intercept estimates the initial abundance (the catch if
fishing was continued indefinitely), and the slope estimates the catchability coefficient
(Hayne 1949; Ricker 1975; Hilborn and Walters 1992). Non-independence in observed
catches, and correlation between catch and cumulative catch, are not modelled by linear

regression (Hilborn and Walters 1992), but can be addressed with other statistical



(Hilborn and Mangel 1997; McCarthy 2007). Maximum likelihood estimates are those
parameter values that make the observed data most likely to have happened (Bolker
2008). The approach provides inference about future data given a hypothesis (a
parameter value) and permits statements about the proportion of confidence intervals,
constructed on the basis of hypothetical future experiments, which are expected to
contain the true parameter value. Bayesian methods provide inference about a hypothesis
given observed data, as well as permitting the incorporation of prior beliefs. The
Bayesian approach assesses the probability distribution for an unknown parameter, given
collected data, and so is logically more consistent with the questions posed in depletion
estimators (McCarthy 2007). Bayesian results provide clear probabilistic statements
about parameter values, and well characterise uncertainty. Hierarchical Bayesian models
(e.g. Wyatt 2002; Dorazio et al. 2005; Rivot et al. 2008) permit information sharing
among similar sites, allowing well defined results to contribute to estimation at similar

sites with less informative depletion data (Wyatt 2002).

Both maximum likelihood and Bayesian estimation approaches have been used to
develop constant catchability depletion models. Moran (1951) and Zippin (1956)
develop the likelihood for a binomial model of fish capture, and use iterative or graphical
maximum likelihood procedures to estimate abundance for depletion data. Alternative
maximum likelihood estimators are available using iterative (Carle and Strub 1978) or
numerical optimisation methods (Schnute 1983). Wyatt (2002) provides a Bayesian

approach for a constant catchability depletion model.

Constant catchability depletion estimators remain in widespread use, despite

evidence that catchability often changes over the course of removal samples (Bohlin and

6



Sundstréom 1977; Peterson and Cederholm 1984; Riley and Fausch 1992; Peterson et al.
2004; Rosenberger and Dunham 2005; Dauwalter and Fisher 2007; Korman et al. 2009).
Catchability may change over passes due to variation among individuals, with more
vulnerable fish captured first. Catchability may also vary as a function of fish size
(Anderson 1995; Dolan and Miranda 2003), operator skill, electrofisher settings (Dolan
and Miranda 2003), habitat (Peterson et al. 2004; Rosenberger and Dunham 2005),
temperature or fish abundance (Bayley and Austen 2002). For juvenile bull trout and
cutthroat trout, Peterson et al. (2004) found a reduction in catchability of between 1.15

and 1.96 times by pass (e.g. pass 1/pass 2, etc.).

Biased depletion estimates with inaccurate uncertainty measures, based on an
unwarranted assumption of constant catchability, are acknowledged as a common

problem in stock assessment (Hilborn and Walters 1992). Models that incorrectly



earlier passes. However, some models (e.g. Schnute 1983; Wang and Loneragan 1996)
do not assume that sequential catches decline monotonically. Both maximum likelihood
(e.g. Otis et al. 1978; Schnute 1983; Wang and Loneragan 1996; Wang 1999; White and
Burnham 1999; Dorazio and Royle 2003) and Bayesian (e.g. Warren 1994; Mantyniemi
et al. 2005) approaches to parameter estimation are applied to depletion models. Despite
widespread discussion of the risks associated with assuming constant catchability, and
great attention to the development of alternative, non-constant catchability depletion
models, no definitively preferred model has emerged for the analysis of removal data.
The alternative models encompass disparate assumptions about the patterns of change in
catchability, and perform differently. Testing of depletion methods is recommended to

select an appropriate approach for a given dataset (Hilborn and Walters 1992).

Simulation experiments allow more precise assessment of the statistical behaviour






maximum likelihood estimation procedures for Models 1, 2, and 3
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C, =q(-q,)"N,i=1 ...k (2.3)

2.2.3 Model 2 (Schnute 1983): stepped catchability

Model 2 (Schnute 1983) assumes that catchability on the first pass differs from all
subsequent passes, but remains constant thereafter (i.e., g1 Zgiand gi=0q,1=2, ..., k);

catchability may increase or decrease after the first pass. The three parameters,

11



Méntyniemi et al. (2005) show (Appendix B) that only the expected value of the
distribution of catchabilities on each pass, is required to model the depletion series.
Mean catchability declines over passes, and is described by a parametric function

analogous to the Schnute (1983) models:

+ -1
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four MCMC chains initialised at different values in the parameter space. To avoid
manual inspection of each simulation for convergence, | used the Gelman-Rubin potential
scale reduction statistic (R ; Gelman and Rubin 1992) to assess whether the posterior
samples obtained on the posterior distribution for each parameter. This statistic compares
the variance within an MCMC chain of length | to the variance between multiple MCMC
chains to estimate the factor by which the scale of the posterior distribution for a given

parameter might be reduced if simulations were continued in the limit | - o (Gelman et

al. 2004). If the potential scale reduction is high (FAQ >>1), additional simulation
iterations are expected to improve the MCMC sample of the posterior distribution.

Because MCMC chains tend to be autocorrelated, | used the ne statistic (Gelman et al.

2004) to track the effective number of simulations. | continued simulations until R<11
and ne > 100 for all estimated parameters (Gelman et al. 2004), up to a maximum of

60 000 simulations. The ne statistic was not tracked for ; in Model 4, because depletion
series rarely contained enough information to provide more than 100 independent

samples for this parameter.

One of the strengths of Bayesian analysis is that the resulting posterior
distributions represent probabilistic statements about parameter values. However, to
compare results in a simulation context, a point estimate is required. | used simulation to
compare the performance of the mean and the median of posterior densities as point
estimates for parameters N and q; (Appendix D). The median was a less biased estimator
if catchability was constant, and was similar to the estimate obtained from maximum
likelihood estimation (the mode of the likelihood; Appendix A). However, the mean is a
less biased point estimate if catchability declines (Appendix D). As my focus was to

13



examine the effects of declining catchability, | selected the mean of posterior
distributions as the appropriate point measure. To represent uncertainty in estimates, |
calculated Bayesian 95% posterior intervals based on the 2.5% and 97.5% quantiles of

posterior samples.

2.2.7 Prior distributions

Bayesian estimation requires prior distributions, which describe prior beliefs
about parameter values before depletion sampling. The Bayesian approach uses collected
catch data to update prior beliefs and produce posterior probability distributions for
unknown parameters. If there is no information to support prior beliefs, the standard
approach is to use non-informative priors. | tested the impact of different prior
distributions on results for all four depletion models. | conducted simulations using both

informative and non-informative prior distributions.

Non-informative prior distributions

Non-informative priors are appropriate where no data are available to describe
abundance, catchability or variation in catchability before the completion of a depletion
experiment. | followed Mantyniemi et al. (2005) in assigning non-informative priors for
Models 1 — 4. 1 assigned uniform priors for log( N ) and log( n ), and uninformative Beta

priors for g

14



available for a given species and habitat combination within a watershed or region. An
upper bound on the site population (N) may also be known from previous studies, and
(after sampling), a lower bound is defined by the total catch Ty. However, when the
number of passes is small, there is little information about the variation of catchability in
the data, and even a weakly informative prior distribution dominates the posterior (e.g.

for n in Model 4; Mantyniemi et al. 2005).

I assigned an informative Beta prior (Table 2.1) for the first pass catchability
(Models 1 - 3 =01, Model 4 = 3) based on the true simulated initial catchability (qo; see
following section). Each qo scenario therefore had its own prior for first pass catchability
(Figure 2.2). | parameterised the prior using the method of moments approximation

(Gelman et al. 2004, p. 582) with mean = o and standard deviation = 0.1, i.e.,
Models 1 - 3: g, ~ Beta (a, £)

Model 4: 1 ~ Beta (a, ﬂ);

_ qo(l_qo)_ . —_(1_ qo(l_qo)_ .
a=q, “var(g) 1; B=(-q,) “varg) 1;
q, ={0.2,0.4,...,0.8} var(q)=(0.1)°. (2.8)

| defined the lower limit of the prior for N using the total catch, i.e.,
log (N )~ Uniform ( log(T, ), 10 ). (2.9)

As the models are highly sensitive to the prior distributions related to the variation in

catchability, I used non-informative priors for g, a and 77, as appropriate (Table 2.1).

15



2.2.8 Simulation approach

The three variables of interest for simulation include the true total population N,
the vector of catchability over passes q;, (i =1, 2, ..., k) and the number of passes (k;
Table 2.2). Catchability is defined by both initial (pass 1) conditions, and by the function
defining pattern of change over passes. | simulated three and four pass depletion
experiments, with true population N = {25, 100}. Based on empirical results for juvenile
salmonids (Riley and Fausch 1992; Peterson et al. 2004; Rosenberger and Dunham
2005), I simulated true initial catchability over the range qo = {0.2, 0.4, 0.6, 0.8}. To
examine whether or not estimates were improved by collecting additional depletion

samples, | also simulated eight pass removal experiments for N = 100.

As a simulation model to generate data, | used the Peterson et al. (2004)

expression, i.e.,

Ci=1, ..k (2.10)

where Qo is the initial catchability and r defines the rate of decline by pass (i.e.r=1=
constant catchability, r = 2 = catchability declines by %2 = 50% each pass. This function
can be parameterised such that the form is similar to Model 3 (Equation 2.5), Model 4

(Equation 2.6) or to an alternative such as an exponential function, i.e.,
a; =g, =1,k (2.11)

However, because the simulation model (Equation 2.10) is different from the estimation
models (Models 1 — 4), none of the depletion estimators fit the simulated pattern of
declines exactly. Based on empirical evidence for reductions in catchability for juvenile

salmonids (mean r = 1.71 for bull trout Salvelinus confluentus and westslope cutthroat
16



trout Oncorhynchus clarki lewisi; Peterson et al. 2004), | simulated values of r in the

range {1.0, 1.2, ..., 2.0}.

| simulated catch data series using random draws from the binomial distribution,

i-1
C; = Binomial N—ZC],qi , =1, ..,k (2.12)
J:
Each N, qo and r combination represents a simulation scenario (Table 2.2). For each of
the candidate depletion models, and for each scenario, | calculated total population and

catchability estimates for M = 500 Monte Carlo trials.

2.2.9 Performance measures

| defined performance measures for estimates of the total population N, the initial
catchability qo, and the variation in catchability. The total population estimate is
generally of most interest to researchers applying depletion models. However, | found
that the bias in estimates of N is largely a function of the magnitude and variation of
catchability. It is therefore of interest to examine how well depletion models define these
parameters. Accurate measures of the catchability and variation in catchability might be
applied to predict the degree of bias in estimates of N, and, in particular, to assess
changes in expected bias between habitat types, over time, or between experimental
treatments. | defined performance measures for N that track the bias, variation,
confidence interval coverage and confidence interval width for the eight depletion

estimators | examined. | calculated these summary statistics over all simulations for each

17



scenario. | examined the bias and variation of estimates of g; and g4. | examined only

bias in estimates of the change in catchability over depletion passes.

Prior to the calculation of summary statistics, | removed simulations for which:

(1) posterior samples failed to converge for any one estimated parameter (Ii >1.1); (2)

fewer than 100 effective samples were obtained for an estimated parameter (nes < 100; n

in Model 4 excepted); or, (3) the estimated population N was more than twice the true

population N.

Performance measures for estimates of abundance

| calculated mean square error (MSE) for each scenario directly from successful

simulations (M"), i.e.,

MSE = mZ— (2.13)

where Nm Is the abundance estimate for each simulation m, and N is the known true

value. Root mean square error (RMSE) is often used as a model performance measure,
because it incorporates both accuracy and precision, and is in the same units as the
estimate. However, | was interested in both components of mean square error (MSE =
variance + bias?). To facilitate comparisons across scenarios where N varies, |
calculated the bias component of MSE and standardised by the true value (N) to obtain

the mean percent error (MPEy), i.e.,

w r\]

Z «100. (2.14)

18



| standardised the variance component of MSE by calculating the simulation based
‘coefficient of variation’ as the ratio of the standard deviation of estimates across all

successful simulations (Sw+) to the true value (N):

= —<100
N

19



L2 m le
=, 2.16
P N (2.16)

where L, and Ly, are the upper and lower confidence bounds, respectively. Because
confidence limits for uninformative depletion series were infinite, reporting the mean

confidence interval width was not useful. As a statistic to coBec1d5f12.015 0 7(i)-

20



Performance measures for estimates of variation in catchability

I calculated the estimated change in catchability between pass 1 and pass 4 (Aq),
for the base case, N = 100, k = 4 as the mean, over all successful simulations of the
difference between the estimate for g, and the estimate for g;. | calculated the mean
percent error in estimates of Aq, i.e.,

M”

A
) mZ 9 100
MPE, = ™ .

*

M Aq

(2.19)

2.2.10 Model selection approaches

Model selection approaches, such as the likelihood ratio test (Kendall and Stuart
1979; Hilborn and Mangel 1997), the Akaike information criterion (AIC; Akaike 1974)
or the deviance information criterion (DIC; Spiegelhalter et al. 2002) can be used to
compare the fits of competing models applied to the same dataset. The likelihood ratio
test requires that models are nested (i.e. of a suite of models compared, the more complex
models reduce to the simpler models under certain conditions; e.g. Models 1 — 3). The
DIC and AIC approaches do not require models to be nested, and trade-off model
complexity with model fit. AIC and DIC use the penalised deviance to test model fit,
where deviance is -2 times the log likelihood (i.e. -2 times the logarithm of the
probability of the data, given estimated model parameters; Gelman and Hill 2007). A
smaller deviance value thus represents a better fit. Adding a parameter to a model is
expected to improve the fit, even if the new parameter provides no additional
information. For this reason, model selection approaches evaluate model fit using a

penalty function incorporating the number of parameters.
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2.3 Results

| present results for abundance estimates for N = 100, k = 4, go = {0.2, 0.4, 0.6,
0.8} as a base case. | present sensitivity to changes in abundance and sampling intensity
by comparing conclusions from this base case to results for N = 25 and k = {3, 8}. | then
present results for estimates of catchability and change in catchability for the base case.
Finally, I present results for the relative effects of abundance, initial catchability and the

rate of decline in catchability on abundance estimates derived using Model 3.

2.3.1 Estimation failure

Estimation failures were rare for Models 2 and 3 (< 1%, aggregated over all

simulated catchability scenarios; Table 2.3). For Model 1 and Model 4
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small, positive, bias in estimates of abundance with low variance (Table 2.4). Because
estimates were well defined in the constant catchability case, confidence interval
coverage tended to be 100%, with narrow intervals (standardised interval width p was

uniformly less than N).

If catchability was high, and declined over consecutive passes, total catch was, as

expected, less than the true abundance. The constant catchability estimator (Model 1
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substantial negative bias (-57.0% to -19.7%) for declining catchability. Model 4 also
provided confidence interval coverage closer to the target 95% than other estimators.
However, at low catchability, with strong declines (go = 0.2, r = 2.0), few fish were being
captured, and there was little information in the depletion series (MPE = -57.0%, CI

coverage = 22.2%).

Incorporating prior information

As would be expected, informative prior distributions for catchability and the
minimum population, based on true simulation parameters and the total catch (Table 2.1,
Figure 2.2), generally improved the performance of estimators (Table 2.5). In general,
priors reduced the bias of estimates, reduced the variability of estimates, improved
confidence interval coverage and reduced confidence width. However, for declining
catchability, estimates remain negatively biased, particularly for low catchability and for

severe reductions in catchability (i.e. r =2.0).

Incorporating additional depletion passes (N = 100, k = 8)

Collecting additional information in the form of additional passes universally
decreased the variance of estimates, and generally reduced bias and confidence interval
width (Table 2.6). However, if catchability was low, estimates remained substantially

biased, particularly if catchability was not constant.

Reducing the number of depletion passes (N = 100, k = 3)
If the number of passes was reduced, it might be expected that the reduction in
observations would negatively impact estimator performance. However, this was not

universally the case. For high catchability, and constant catchability conditions, three
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pass estimates were more biased than the analogous four pass estimates (Table 2.7).
However, if catchability was low, and declined by pass, the three pass estimates were
generally less biased than the four pass equivalent. Uncertainty in estimates was
generally increased, with wider confidence intervals. Because confidence interval
coverage for many four pass scenarios was less than the target 95%, wider intervals in

three pass scenarios generally improved confidence interval coverage (i.e. closer to 95%).

Impact of low true abundance (N = 25, k =4)

If the true total population was low (N = 25, k = 4), estimates at constant
catchability, or near constant catchability (r = { 1.0, 1.2 }) were generally more biased

than was the case for N = 100 (Table 2.8; cf. Table 2.4)

However, if catchability declined over passes, performance relative to the N = 100
base case depended on initial catchability. At high initial catchability (go = 0.8), Model 1
was less biased for N = 25 than for N = 100. Models 2, 3 and 4 were generally more

biased at low N
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biased and more variable for lower true catchability than for higher true catchability, and
were more biased if true catchability declined over passes, relative to constant true

catchability.

Three and four pass depletion series generally contained too little information to
accurately estimate parameters defining the change in catchability over successive
depletion passes (for an example, see Appendix D). As a result, estimates of catchability
for latter passes were both biased and highly variable (e.g. g4 for k = 4; Table 2.10).
Severely biased estimates for g4 were not necessarily associated with biased estimates of
abundance. For example, for gqo = 0.8 and r =>1.2, estimates of g, were badly biased
(MPE = 63.2% to 737.6%), but estimates of abundance were relatively unbiased (MPE =

-8.3% to 4.4%).

2.3.4 Effects of catchability variation on depletion estimates of change in
catchability over depletion passes

Despite bias and high uncertainty in estimates of late pass catchability, if true
catchability declined over passes, non-constant catchability models did track this decline.
All models substantially underestimated the change. At moderate and high catchability
(g0 ={ 0.6, 0.8}), Model 3 estimates of the change in catchability were least biased (e.g. -

23.0% - - 45.8% for qo
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and 3 erroneously estimated, on average, that catchability increased between pass 1 and

pass 4.

2.3.5 Model selection approaches

Three and four pass depletion series did not contain sufficient information to
reliably estimate all parameters of more complex non-constant catchability models.

Although simulation results showed that application of these models was justified under
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used simulation to rigorously test the performance of these non-constant catchability

depletion estimators.

My simulation results showed that, for the three and four pass depletions
commonly completed by freshwater fisheries biologists, estimators explicitly designed to
address non-constant catchability did not substantially reduce the bias of abundance
estimates. Estimator performance was driven by catchability and the change in
catchability, rather than by abundance. As might be expected, performance was
particularly poor for low catchability, as well as for large declines in catchability by pass.
Confidence intervals for non-constant catchability models were more likely to contain the
true value than was the case for constant catchability models. These confidence intervals
could be very wide, accurately reflecting the high uncertainty in estimates of abundance.
Improved estimates (reduced bias, reduced variance and reduced confidence interval
width) were obtained if additional information was incorporated in the form of
informative prior distributions. The collection of additional depletion passes reduced the
variance of estimates, but generally did not substantially reduce bias. Confidence interval
coverage was generally reduced (often detrimentally so, with increased certainty

indicated for biased results).

2.4.1 Bayesian parameter estimation versus maximum likelihood estimation

If catchability declines, Bayesian abundance estimates were less biased than
maximum likelihood estimates (Appendix A). In the case where non-informative priors
are assumed, this difference reflects the way in which point estimates and confidence
intervals are calculated. If little information is supplied by prior distributions, the

Bayesian posterior distribution will be similar to the likelihood. | calculated Bayesian
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point estimates for N as the mean of posterior distributions (Appendix D). Maximum
likelihood estimates are the mode of the analogous likelihood. For depletion models with
declining catchability, posterior distributions and likelihood profiles for N tend to be
skewed right by the possibility that catchability is very low (Schnute 1983; Appendix D).
As a result, the mean of these distributions (i.e. the Bayesian point estimate) will tend to

be less biased than the mode (i.e. the maximum likelihood estimate).

Bayesian methods might also be preferred on conceptual grounds, because: (1)
posterior distributions represent probabilistic statements about parameter values, so
results are easily interpreted; (2) if prior data are available for any parameters of a given
model, there is an explicit mechanism to include this information, and (3) Bayesian
models are amenable to hierarchical analyses likely to be appropriate for depletion data
collected over a network of related sites in a given study (e.g. Wyatt 2002; Rivot et al

2008).

2.4.2 Selecting an appropriate depletion model

If data are available to show that catchability is constant, constant catchability
depletion models are preferred. If supplementary information is not available to test this
assumption, biologists must determine if it is better to erroneously assume constant
catchability, or to erroneously assume non-constant catchability. Empirical results
suggest that catchability is probably not constant for juvenile salmonids (Bohlin and
Sundstrom 1977; Gatz and Loar 1988; Riley and Fausch 1992; Peterson et al. 2004;
Rosenberger and Dunham 2005; Carrier et al. 2009) as well as for other fish (Dauwalter

and Fisher 2007).
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The cost of assuming constant catchability, and being wrong, can be high,
because constant catchability models provide biased estimates with inappropriate

confidence limits if capture efficiency is in
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uses a likelihood ratio test to compare the fits of Models 1 — 3; | apply this approach to
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For the range of parameters values that | examined, the effects of true abundance
on bias were overwhelmed by the effects of initial catchability and the rate of decline in

catchability. This might not be the case
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not reflect the sampling conditions experienced in the collection of the field data (Bohlin

and Sundstrom 1977) used by Mantyniemi et al. (2005).

Informative priors for the change in catchability are also expected to improve

estimates from depletion estimators. Substantial literature evidence for non-constant
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depletion experiments to estimate juvenile abundance in small (Peterson et al. 2004,
Rosenburger and Dunham 2005; Sweka et al. 2006; Carrier et al. 2009) and large
(Korman et al. 2009) rivers. All recommend the use of mark-recapture experiments to

obtain unbiased estimates of abundance and catchability.

Using field experiments and simulation, Korman et al. (2009) show that, for
backpack and boat electrofishing on a large river, mark-recapture studies provided less
biased estimates of capture probability than did maximum likelihood depletion methods.
Mark-recapture methods were able to detect a change in catchability between successive
passes, while depletion data did not resolve the difference, based on AIC comparison of

fits for both constant and non-constant catchability models.

Additional information from related sites

Perhaps the most promising approach to incorporate additional information is to
use data from sites that are likely to have similar catchability conditions (for example,
sites that are nearby, or sites with similar habitat). Hierarchical Bayesian models (e.g.
Dorazio et al. 2005; Wyatt 2002; Rivot et al. 2008) provide a framework to permit
analyses of this kind, facilitating information sharing between appropriately similar s