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Abstract 

Recovery plans for endangered salmon stocks often include aggressive 

restoration of freshwater spawning and rearing habitat. However, there is large 

uncertainty about its effectiveness for increasing freshwater survival rates 

compared to cheaper, passive, actions that focus on habitat protection. 

Experimental implementation of restoration projects could reduce uncertainty and 

improve future recovery decisions, but optimal designs should balance statistical 

requirements for high power against the social costs associated with uncertain 

outcomes. I used decision analysis to design an example experiment for testing 

the relative effectiveness of aggressive and passive habitat actions for increasing 

the egg-to-parr survival rate of spring chinook salmon (Oncorhynchus 

tshawytscha). This approach not only accounted for the costs of experimenting, 

but also the magnitude of costs for different outcomes and their probability of 

occurrence. I ranked the candidate designs using an objective of minimizing 

expected total cost to society and found that the most expensive, highest-power 

design was optimal. This choice was robust to a wide range of assumptions, but 

primarily depended upon the high social costs incurred under outcomes where 

stocks went extinct. These results are different from other research that shows 

less powerful experiments can be optimal. 
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passive costs. While the costs of passive actions may be spread widely over 

various stakeholder groups, aggressive actions are funded through budgets 

allocated to specific resource sectors (i.e. fisheries) and can make up a high 

proportion of those budgets. This inflicts additional opportunity costs.-.the net 

benefit forgone because the resources providing the service can no longer be 

used in their next most beneficial use (Tietenberg 1992). For example, 

implementing and properly monitoring an aggressive habitat restoration program 

may use up funds that could have been used for an alternative, and perhaps 

more successful, recovery program. 

Aggressive habitat actions are often justified on the assumption that they 

will restore spawning and rearing habitat, and consequently the salmon 

populations that depend on it, more quickly than passive habitat actions (e.g., 

Slaney 2000). This is usually just a hypothesis; there is limited evidence that the 

application of aggressive restoration actions is generally successful at increasing 

production of the freshwater lifestages of salmon (e.g., Roni et al. 2002). Using 

an experimental approach when implementing aggressive habitat restoration 

projects to deliberately test this hypothesis could reduce uncertainty about their 

future effectiveness and the benefits for both salmon and society (e.g., 

MacGregor et al. 2002). Proper experimental design contributes to this goal in at 

least two ways: (1) it increases the probability of detecting true effects of some 

specified magnitude (i.e. statistical power, Peterman 1990); and (2), it increases 

the strength of inferences about results of actions by reducing the confounding of 

management actions with uncontrolled environmental processes (Green 1979). 
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Statistically powerful experiments are not always economically optimal due to the 

costs of experimenting and the potential costs and benefits of decisions based on 

the outcome of the experiment and their probability of occurrence (Walters and 

Collie 1988; MacGregor et al. 2002; Keeley and Walters 1994). The net value of 

experimenting will depend on who bears the biological, social, and economic 

costs of experimental errors of inference and their probability of occurrence, 

factors that should be considered explicitly prior to the initiation of an 

experimental management program. A priori statistical power analysis (Peterman 

1990) and decision analysis (Clemen 1996, Peterman and Anderson 1999) are 

useful tools for assessing the relative value of different experimental designs in 

terms of both social and scientific objectives (Peterman 1990; Peterman and 

Antcliffe 1993; MacGregor et al. 2002) and both have been applied to the design 

of resource management experiments (MacGregor et al. 2002, Keeley and 

Walters 1994, Walters and Green 1997, McAllister and Peterman 1992a,b).  

One area where such considerations are especially relevant is the 

Columbia River basin where salmon stocks have declined sharply since the  

development of the Columbia River hydrosystem, leading to listing many stocks 

under the United States’ Endangered Species Act (ESA) (Schaller et al. 1999). 

The Northwest Power Planning Council’s Fish and Wildlife program spends 

millions of dollars annually to help recover threatened salmon stocks (e.g., BPA 

2001). Recent modeling analyses have provided contradictory advice, finding 

that either the breaching of certain dams (Peters and Marmorek 2001), or off-site 

mitigation efforts (e.g., habitat restoration) in combination with improved 
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passive treatment, this will trigger the release of funds allowing wider application 

of the aggressive treatment to other candidate watersheds. 

My example has three major components: experimental design, a priori 

statistical power analysis, and decision analysis. I will identify the rank order of 

alternative experimental designs based on two objectives: 1) a social objective of 

minimizing the expected total cost to society and 2) a statistical objective of being 

the quickest to achieve an acceptably high level of statistical power (i.e. ≥ 0.8). I 

calculate outcomes in terms of expected costs because it is difficult to estimate 

the intangible benefits to society of enhancement for endangered salmon stocks 

(e.g., Loomis and White 1996). Depending on whether the more expensive, 

higher power designs reduce costs to society more than their additional cost to 

implement, the rank order of designs may differ for these two objectives. 

Methods 

Experimental design 

I broke the experimental design into several logical components to 

facilitate description. The first component describes the purpose of the 

experiment and covers the experimental objective, treatment and management 

hypothesis. The second component covers the statistical requirements including 

the biological measurements of outcomes and the BACIP monitoring framework. 

The third component combines elements of the first two into a model of the costs 

of experimenting. A specific experimental design is a single combination of the 

number of years of post-treatment monitoring, the level of statistical significance 
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used for hypothesis testing, and the type of monitoring program used to estimate 

biological outcomes (i.e. a change in the egg-to-parr survival rate). 

Experimental objective, treatment and management hypothesis 

The experimental objective is to compare the relative effectiveness of 

passive land use regulations and a form of aggressive habitat manipulation for 

reducing stream sedimentation and increasing the egg-to-parr survival rate of 

juvenile chinook salmon. The treatment consists of applying aggressive sediment 

control actions (e.g., road deactivation) to one stream, while continuing to 

manage the other under an existing passive regime that relies on land-use 

restrictions (e.g., grazing management) to reduce sediment input. The 

management hypothesis is that the aggressive restoration action will increase the 

egg-to-parr survival rate of spring chinook salmon more quickly than the passive 

restoration action. 

Index of egg-to-parr survival rate and BACIP monitoring framework 

Index of egg-to-parr survival rate 

I used parr density/spawner abundance (P/S) as an index of the egg-to-

parr survival rate. Developing this index is more expensive than either a parr 

density or spawner abundance index, but it accounts for the effect of spawner 

abundance on parr density, is linked closely to freshwater rearing conditions, and 

can respond to changes in the first year after treatment. This will reduce 

confounding compared to just using parr abundance, or spawner abundance 

alone, decrease response time, and improve inferences about the effect of 
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juvenile chinook and under the low seeding levels observed from 1985 to 1996, 

summer parr could be expected to concentrate there, making the data 

representative of the true parr distribution in the sampled streams. The spawner 

abundance data are derived from annual fall redd counts conducted by IDFG for 

these same streams, expanded to an estimate of total annual spawner 

abundance by adjusting for stream length (Beamesderfer et al. 1997). 
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Table 1. Summary of biological data. The top box presents summary statistics, 
sampling information and estimated egg-to-parr survival rates for Bear Valley/Elk 
Creek (BVC), Marsh Creek (MCR) and Sulphur Creek (SCR), tributaries of the 
Middle Fork Salmon River, Idaho. “Ln(P/S)” is the natural log of the ratio of parr 
density per 100m2 and spawner abundance. “x” is mean , s2 is sample variance, 
s is sample standard deviation, n is the number of annual Ln(P/S) data points for 
each stream, and CV is the coefficient of variation (the ratio of the standard error 
of the mean to the mean). “Stream sections sampled/year” is the range in 
number of stream sections sampled each year to estimate parr density for each 
stream. Egg-to-parr survival rate is estimated in a separate analysis. The middle 
box presents the correlations of the annual Ln(P/S) for each stream. The bottom 
box presents the summary statistics for the mean of the paired differences in 
Ln(P/S) for the two possible BACIP pairings under the assumption that Bear 
Valley/Elk Creek is the stream impacted by sedimentation. 

Stream specific biological data1

BVC Ln(P/S) MCR Ln(P/S) SCR Ln(P/S)
x -5.75 -2.27 -2.92
s2 0.62 0.76 2.33
s 0.73 0.95 1.47
n 11 10 8

CV 0.04 0.13 0.18

Stream sections 
sampled/year 6 to 11 3 to 7 1 to 2
Egg-to-Parr 

survival rate2 1.2% 21.8% 11.9%

Correlation results, Ln(P/S)
BVC MCR

MCR 0.34
SCR 0.64 0.17

Mean and variance of the baseline paired differences (Di,j)
DBVC-SCR DBVC-MCR

x -2.71 -3.38
s2 1.34 0.93
s 1.16 0.96
n 8 10

CV 0.15 0.09

2 I.J. Parnell, unpublished data.

1 Parr density data from IDFG GPM database (Hall-Griswold and Petrosky 1996). Spawner 
abundance data from Beamesderfer et al. 1997.

 

The parr data showed a strong linear relationship with spawner 

abundance at the low-seeding levels in the data set (correlations ranged from 

0.72 to 0.74, I.J. Parnell. unpublished data), but this linear relationship may not 
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hold if juvenile populations increase substantially following successful treatment. 

A curvilinear Beverton-Holt egg-to-smolt relationship is commonly assumed for 

the chinook stocks of the Salmon River (e.g., Bjornn 1978, Bowles and Leitzinger 

1991). Therefore, an important analytical decision was whether to model density-

dependent effects explicitly. If not accounted for, these effects could confound 

results; increases in the P/S index could be interpreted as positive effects of 

habitat restoration but might actually reflect a density-dependent increase in the 

egg-to-parr survival rate under declining spawner abundance. If density-

dependent effects were important, then statistical tests of change in the index of 

survival rate (P/S) would need to focus on changes in the parameters for models 

of density-dependent egg-to-parr survival. Alternatively, if density-dependent 

effects were not important during the experiment, I could use the simple P/S 

index. To resolve this, I asked two questions: 1) “Do the data indicate that the 

egg-to-parr survival rate is density-dependent?”, and 2) “Are density-dependent 

effects likely to become important over experimental periods in the range of 

those specified by NMFS 2000 (i.e. 3-, 5- and 8-years)?” 

I found that a density-dependent model of parr production fit the data no 

better than a density-independent linear model of parr production (I.J. Parnell, 

unpublished data). Modeling the effects of recovery for a stock parameterized 

with the Middle Fork Salmon data showed that even under an unrealistic 

assumption of instant recovery in egg-to-parr survival rate from that of a 

degraded stream to that of a pristine one, it took 39 years for the spawning stock 

to rebuild to a range of abundances where density-dependent effects on the egg-
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Valley/Elk Creek (correlation of 0.64 vs. 0.34 for Marsh Creek vs. Bear Valley/Elk 

Creek, Table 1, middle box). 

Model of the costs of experimenting 

Cost of Experimenting 

The costs of experimenting included four basic components: 

implementation of aggressive treatment, maintenance of the treatment, 

monitoring in the aggressively treated and passively treated streams, and 

analysis of data at the end of the experimental period. Implementation costs 

include project management, design, and application of treatment (Table 2). 

Application of treatment includes the one-time costs of materials, labor, and 

equipment. Maintenance costs cover the annual cost of maintaining treatment 

(e.g., inspection and repair of roads and culverts). The monitoring component 

covers the costs of collecting parr density and spawner abundance data using 

summer snorkel counts and redd counts respectively. Although not explicit to this 

analysis, I also included the cost of monitoring the physical response of the 

system to treatment (e.g., %sand and cobble embeddedness indices) because 

this would also be necessary information for making inference about sediment 

reduction actions. The costs of analysis are incurred at the end of the 

experimental period. A general model combines these components in terms of 

present economic value: 

(4)   ∑ ××+××+×+×=
=

n
]ët)Cnnm2(

n
[)ëna()Cn(C

A

1t
mainpairspairs

A
AimppairsiE,  
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sufficient funding. The low-cost program is the base-case. The detailed 

components of these costs are described below (Table 2). 

To estimate costs for each of the lower- and higher-power monitoring 

designs, I made the annual monitoring cost (m) a function of the number of 

stream sections sampled in parr monitoring and the cost of estimating spawner 

abundance: 

(5) )]([ secdim SCCCCm sampledtionbasespawnerentse ×+++=  

where for each stream Csediment is the cost of sediment sampling, held constant 

across all designs, Cspawner is the cost of estimating spawner abundance, Cbase is 

a base travel cost associated with parr sampling that is incurred regardless of the 

number of stream sections sampled, Csection is the average sampling cost per 

stream section, and Ssampled is the number of stream sections sampled during 

parr surveys. I used equation 5 to shift from lower- to higher-cost monitoring by 

increasing Ssampled from the average cost observed under the GPM monitoring 

program for the Middle Fork Salmon River streams to the average cost observed 

for an ISS-type monitoring program that provides more precise estimates of 

mean parr abundance. I also increased the cost of estimating spawner 

abundance (Cspawner) (Table 2).  
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considerations. First, I estimated the maximum possible increase in the survival 

rate as the difference between the estimated egg-to-parr survival rate for an 

impacted stream (i.e., 1.2% in Bear Valley/Elk Creek) and a pristine stream (i.e., 

21.8% in Marsh Creek), an approximate 17-fold increase (Table 1, I.J. Parnell, 

unpublished data). Second, I estimated the expected magnitude and timing of an 

increase in survival under passive treatment. Rhodes et al. (1994) cite an 

observed 10-fold increase in survival-to-emergence, an index of egg-to-fry 

survival rate, over 15 years under a passive form of restoration (cessation of 

logging) after a massive sediment influx to the South Fork Salmon River, Idaho. 

A 10-fold increase from the estimated current egg-to-parr survival rate in Bear 

Valley/Elk Creek is about 12.3%. To justify wider application of the aggressive 

treatment, the increase in survival for the aggressively treated stream must be 

higher than that achieved under passive treatment. I assumed managers would 

want to achieve close to the 17-fold maximum increase in the egg-to-parr survival 

rate, or a net 4.8-fold increase in survival relative to the passively treated stream 

over 15 years. I assumed that a slightly more conservative net 4-fold increase 

would be satisfactory. 

I applied this biological effect size using two different scenarios. For base-

case conditions, I assumed that the 4-fold increase was instantaneous and 

constant across all nA. I then tested the sensitivity of base-case results to a more 

realistic but slower trend of a net 4-fold increase over 15 years in the egg-to-parr 

survival rate of the aggressively treated stream. Under this approach there was a 
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1.7-fold increase in egg-to-parr survival rate at nA = 6 and a 3-fold increase at nA 

= 12. 

Step 2: BACIP effect size (Ln(∆∆) = BD  - AD ) 

I converted increases in the egg-to-parr survival rate to changes in the 

BACIP statistic as follows: 

(7) )()( ][ ∆=∆+−=−=
•

LnLnD DDDD BBAB  

where 
.
D  is the average difference between periods, BD is estimated from the 

data and ∆ is the multiplicative change in the egg-to-parr survival rate derived 

above. 

Step 3: Standardized Effect Size (d) 

The standardized effect size, d (Cohen 1988), is,  

(8) 
spooled

||D
d

•

=  

where 
.
D  is the BACIP statistic estimated using equation 7 and spooled is the 

pooled standard deviation estimated by equation 9. 

(9) 
2

)1()1( 22

−+
−×+−×

=
nn

nsns
s

BA

AABB
pooled  

s2 and n are the sample variance and sample size for BD  and AD  as indicated by 

subscripts. s2 for BD  is estimated from the baseline data and s2 for AD  is 

estimated as described next.  
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Sample variance (s2) 

I estimated the base-case variance of BD for the Before period ( 2
Bs ) from 

the paired-differences in Ln(P/S) between the treatment and control streams 

(Table 1). The variance in AD for the After period ( 2
As ) was either equal to 

2
Bs under lower-cost monitoring, or adjusted downward to maintain the Before 

period CV of 15% (Table 1, bottom box) under higher-cost monitoring. I assumed 

that the correlation between the two streams did not change in the After period 

and that the higher cost monitoring program reduced 2
As by reducing the 

measurement error component of equation 1.  

Decision analysis 

Formal decision analysis has eight basic components (e.g., Peterman and 

Anderson 1999). The decision tree (Figure 1) is a graphical summary of the 

decision framework.  
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alternative hypothesis that there is a difference; and (2) a Type I or II error in 

inference, or a correct inference was drawn. There are four possible states 

represented by the lines leaving the circles in Figure 1. 

The probability of each state of nature: The probabilities for the two 

possible states of the first category of uncertainty (PHo and 1-PHo) are not known 

prior to the experiment; therefore, I set PHo to 0.5 for base-case runs and varied it 

in sensitivity analyses. There are four states for the second category of 

uncertainty (Figure 1, Table 5).  If the null hypothesis is the true state of nature, 

the outcome of the statistical test will be either a Type I error in inference 

(committed with probability equal to α) or the correct inference (with probability 

equal to1-α) that there is no difference between the aggressive and passive 

treatment. When the alternative hypothesis is the true state of nature, the 

outcome of the statistical test will be either a Type II error in inference (committed 

with probability equal to β), or the correct inference (with probability equal to 1-β, 

or statistical power) that the aggressive treatment is better than the passive 

treatment. I set α to 0.05, 0.1 and 0.2 and calculated β (eq. 6) for each case. 

Table 5. Four possible outcomes for classical inference. Adapted from Peterman 
1990. 

Decision States of nature 
Reject Ho Retain Ho 

Ho True Type I error (α) 
 
Cost = C1,i 

Correct (1-α) 
 
Cost = C2,i 

Ho False Correct (1-β) power 
 
Cost = C4,i 

Type II error (β) 
 
Cost = C3,i 
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well as the cost of implementing recovery actions that were unsuccessful (were 

too late) when the Type II error was discovered. C4,i included the cost of 

justifiably expanding the aggressive treatment to candidate watersheds. Although 

not considered in this analysis, the correct decision here is also associated with 

potential future benefits such as revenue from future salmon harvests. 

I used representative costs to estimate the order-of-magnitude for C1,i to 

C4,i in the context of the ESA-listed stocks whose data I used for this analysis 

(Table 6). I calculated treatment expansion costs using a modified version of the 

experimental cost model (eq. 4). 

(12) ∑
+

×+×+××=
=

−
T

nt
Cmn

n
CnC

A
A

t

w

nT A
w

Expand

1
])}({[)( λλ maintimp  

where nW is the number of candidate watersheds that treatment is applied to (10 

for this analysis), Cimp is as for eq. 4 except that is does not include annual 

project management costs, m is the annual cost of monitoring each watershed, T 

is the duration of the management period (20 years for this analysis) (Figure 2), 

T-nA is the duration of the post-experimental period, Cmaint is as for eq. 4, and λ is 

the discount factor. The number of candidate watersheds (nW), or universe of 

inference (Walters and Green 1997) are all those watersheds in the region of the 

Middle Fork Salmon River where sedimentation has been identified as a 

production constraint for spring chinook that could conceivably be addressed 

through aggressive restoration actions. During Columbia Basin system planning, 

sedimentation was identified as a production constraint for spring chinook in 34 
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subbasins of the Salmon River watershed (IDFG 1990), of which the Middle Fork 

Salmon is a tributary. Many of these watersheds are nested within others also 

listed as being sediment impacted and so could likely be treated at the same 

time, therefore 10 seems a reasonable base-case value for nW. A management 

period (T) of 20 years falls in the range of management periods that have been 

considered by other researchers exploring the optimal design of salmon 

enhancement experiments (e.g., MacGregor et al. 2002, 15-20 years; Keeley and 

Walters 1994, 30 years). I assumed managers would continue to allocate funds 

to monitoring of all treated watersheds because they are aware of the potential 

for errors in inference. I assumed no further periodic analysis costs, though such 

analysis would be required to process monitoring data and evaluate stock status. 

I did not consider possible economies of scale that might reduce implementation 

and monitoring costs over a larger number of watersheds. 

The cost of implementing ineffective alternative actions upon detecting a 

Type II error was incurred as a discounted lump sum at the end of the 

management period. 

(13) λ×= T
newprogramfix CC  

Cnewprogram was similar in magnitude to that of the existing recovery 

programs, (e.g., the BPA 2001 budget noted above), but set slightly higher 

($50,000,000) because I assumed that the urgency of trying to reverse the Type 

II error for an ESA-listed stock would justify massive spending. 
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I represented the cost of extinction of the fish as the discounted lump sum 

of the annual sunk cost of recovery actions over the duration of the management 

period (T).  

(14) λ××= T
sunkextinction CTC  

I estimated Csunk as the FY 2001 Fish and Wildlife program budget for the 

Salmon River region ($ 31,387,793) (BPA 2001). Only about 22% of the full 

annual budget ($ 6,976,744) is specifically allocated to habitat restoration 

actions, the rest goes to other recovery related research, however, I assumed the 

full level of funding was an index of the value of these stocks to society, so it 

served as a useful proxy for the intangible costs such as the existence value of 

the fish. These costs can be very high for endangered species (e.g., Osler et al. 

1991). Because these cost are hard to quantify, I did sensitivity analyses on the 

relative magnitude of the costs of Type I and Type II errors, and the relative 

magnitude of experimental costs (CE,i) and the costs of outcomes (E(Co,i)). 
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Table 6. The costs of outcomes associated with post-inference decisions. 

State of Nature 1 State of Nature 2 
(inferred) 

Cost  $ value 
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The overall costs of the experiments were higher for a trend because power was 

generally lower, so the high cost of a making a Type II error (C3) contributed 

more to E(CT). The contribution of the costs of outcomes associated with a true 

null hypothesis (Type I error, C1 and correct, C2) did not change. Power was 

lower with a trend in productivity because the mean post-treatment difference in 

Ln(P/S) ( AD ) was calculated around an increasing trend from lower to higher 

values of Di,A, rather than around a constant mean difference in the egg-to-parr 

survival rate, as for the base-case. Thus, mean DA under a trend was lower than 

under the instant-increase (base-case) scenario for a given experimental period 

(nA). A lower AD  implies a lower effect size (∆) and thus lower power. For this 

analysis, without a trend in effect size, the post-treatment differences reflected a 

constant net 4-fold increase in the egg-to-parr survival rate for both nA = 6 and 

12. However, with the trend in effect size, there was only a net 1.4-fold increase 

at nA = 6 and a net 1.8-fold increase at nA = 12, even though the actual final 

increase achieved was 1.7-fold and 3-fold for nA = 6 and 12 respectively. 
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over a wide range in PHo, but lower power designs became optimal for PHo ≥ 0.9; 

as PHo increased, first design 11 and then design 10 became optimal. 

E(CT) for all four designs decreased and diverged from one another as the 

certainty that habitat treatment works increased (PHo approaches 0). E(CT) 

decreased because the contribution of the costs associated with a true null 

hypothesis decreased. The costs of the different designs diverged as certainty 

increased, with higher power designs having the lowest costs. This occurred 

because their lower Type II error probabilities weighted Type II error costs less 

and thus contributed the least to E(CT). E(CT) increased and converged as the 

certainty that habitat treatment worked decreased (PHo approached 1) because 

the costs associated with the true null hypothesis made up an increasing 

proportion of E(CT) (Figure 1). Under very low certainty (PHo > 0.9), low-α designs 

became optimal because they gave the least weight to Type I error costs and 

thus contributed the least to E(CT). 
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making in the present, while lower values imply that future conditions are 

relatively more important. E(CT) declined as r increased, but design 12 remained 

optimal across all values of r explored here. Thus, there was no tradeoff between 

present and future interests for this range in r. There was very little difference in 

E(CT) for designs 10, 11 and 12 because they all have the same costs of 

outcomes (Table 9). E(CT) for design 6 was always highest because it had higher 

costs of outcomes (Table 9). The difference in E(CT) between all four designs 

generally narrowed as r increased because when higher value was placed on the 

present value of costs, the benefits of higher power experiments (in terms of 

lower expected cost) were less able to offset the large costs incurred for 

outcomes associated with a true null hypothesis (Figure 1, cost of a Type I error, 

C1, and a correct inference, C2). 

 





 42

under the primary objective, I varied the relative magnitude of the costs of Type II 

and Type I errors. Since the costs of outcomes changed with respect to nA (Table 

9), I kept the costs of a Type I error constant for a particular experimental period 

and varied the costs of a Type II error around them from 0.05 to 10 times their 

magnitude. Design 12 remained optimal over most of this range, but the lower-

power design 11 (nA = 12, High $, α = 0.1) became optimal at a ratio of the Type 

II to Type I costs of about 0.15 (Figure 5). This occurred because below a ratio of 

0.15, the benefits of the higher-power design 12 (nA = 12, High $, α = 0.2), in 

terms of its higher power reducing Type II costs, no longer offset the higher costs 

of a Type I error incurred through its higher probability of a Type I error relative to 

the lower-power design 11 (nA = 12, High $, α = 0.1). That is, a lower probability 

of Type I error (α) became more important than a lower probability of making a 

Type II error because it reduced the contribution of the large Type I costs to 

E(CT).  

The slopes of the four lines in Figure 5 are quite different because for each 

design, only the costs of a Type II error changed. Thus the effective slope of 

each line became equal to (1-PHo)*(β) (eq. 11). PHo is constant for all four 

designs, so lower power (higher β) designs had higher slopes and thus steeper 

lines. 
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Sensitivity of the optimal design to the number of candidate watersheds 

(nW) and the duration of the management period (T) 

I initially assumed a single value for both the number of candidate 

watersheds (nW) to which the aggressive treatment was applied after the 

experiment and the duration of the management period (T). However, the 

sensitivity analyses showed that the optimal design choice was driven by the 

high costs of outcomes, which depend on both nW and T. Therefore, I briefly 

explored the sensitivity of the optimal design to these parameters. 

I found that the optimal design (design 12) was robust to a wide range in 

nW. Increasing nW increased the cost of expanding treatment, and thus increased 

the need to avoid making a Type I error. This resulted in the lower-power (lower 

α) design 11 becoming optimal at nW = 73, well above the maximum number of 

candidate watersheds (34) for the Salmon River watershed as estimated from 

IDFG (1990). Reducing nW decreased the costs of a Type I error, making them 

less important relative to the cost of a Type II error. Thus, for nW < 10, the highest 

power design (design 12) remained optimal. 

I also found that the optimal design choice was robust to the duration of 

the management period (T). Increasing T increased the costs of outcomes, but 

also increased the influence of the discount rate (r), which offset those increased 

costs. This effect dropped the expected total cost to society E(CT) for the optimal 

design below its base-case value for T > 21 years. Within the base-case cost 

framework, increasing T increased the cost of a Type I error more than the cost 

of a Type II error and the benefits of higher power designs no longer offset the 
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growing cost of a Type I error at T ≈ 80 years. At that point the lower power 

(lower α) design 11 became optimal. The value of T where the optimal design 

switched to the lower power design decreased as r increased. For r = 10%, the 

switch occurred at T ≈ 55 years. Both of these values of T were greater than 

what might be considered a reasonable period for evaluating recovery actions for 

endangered species. Decreasing the duration of T did not affect the optimal 

design because r had less influence on the costs of outcomes over shorter 

periods. Thus, the Type II costs remained higher than Type I costs for T<20 

years and design 12, the highest power design, remained optimal. 

Sensitivity of the optimal design choice to variance in AD  

I did not explicitly explore the sensitivity of the base-case optimal design to 

uncertainty about the level of post-treatment variance, other than to have higher 

and lower-variance monitoring designs. Variance is likely poorly estimated 

because there were few baseline data points (nB = 8) and the parr data were 

collected from parr populations generated at low spawner abundances (i.e., 

density-independent egg-to-parr survival rate). As stocks recover and density 

dependent effects become important, variance in Ln(P/S) can be expected to 

change. However, the robustness of the optimal design to assumptions about 

effect size, α, and the higher-cost lower variance or lower-cost higher variance 

monitoring designs suggests that it would also be robust to increased post-

treatment variance, though E(CT) would be higher because of lower power. 





 51

design choice under this secondary ranking criterion (Table 7), but with a trend in 

effect size, no design was optimal (Table 8). However, the optimal design under 

the primary objective had the highest power and lowest expected total cost.  

These sensitivity analyses show that the optimal design changed under 

certain conditions for reasons that were both logical and consistent with the 

decision framework. More importantly, they showed that the optimal design 

choice was robust over reasonable ranges for assumptions. For this example 

then it appears that it is worth spending more time and money to do monitoring 

well. 

Factors worth further consideration 

The sensitivity analyses highlight two factors worth further consideration. 

First, although the probability of the null hypothesis cannot be known prior to the 

experiment, if managers believe the probability of the aggressive restoration 

action not working better than the passive action could be as high as 0.9, it 

becomes important to either not experiment at all and to turn to other recovery 

options, or to select experimental designs that minimize the probability of making 

a Type I error. Given the widespread application of aggressive restoration 

techniques, it seems unlikely that managers would believe the probability of Ho 

could be as high as 0.9. A second and more important consideration is the 

structure for the costs of outcomes, in particular, the very influential and large 

cost of extinction. In the context of this analysis, it seems unlikely that the costs 

of Type II errors could be 15% of the costs of Type I errors when both outcomes 

lead to stock extinction and incur that cost. Similarly, it also seems unlikely that 
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for endangered salmon stocks the cost of extinction could fall below 4.2% of that 

estimated in this analysis. However, because this cost is so influential and 

because it includes costs such as existence value that are difficult to estimate, it 

would be important to consider carefully the magnitude of the cost of extinction 

before the final selection of the experimental design, and how it might be incurred 

under different outcomes. Contingent valuation methods could be applied to 

estimate these existence values in terms of society’s willingness to pay for 

recovering endangered salmon stocks (Loomis and White 1996).  

Contingent valuation of the existence value of salmon has been done 

before in the Columbia River basin and the results provide an interesting contrast 

to my estimates of the cost of existence. Olsen et al. (1991) conducted an 

existence valuation study to estimate the willingness-to-pay and willingness-to-

accept of users and non-users (existence value only and some probability of 

future use) for a doubling of Columbia River salmon stocks. Their estimates (in 

1996 dollars) ranged from US $42,415,000 per year for existence value only to 

US $110,943,000 per year for users, over the whole Columbia River basin. 

These values imply that a lower-power design than design 12 would be optimal 

could. Although Olsen et al.’s (1991) estimates are for the whole Columbia River 

basin, their existence value estimate is already lower than the value for the cost 

of extinction at which the optimal design choice for this analysis switched to the 

lower power (lower α) design 11 (US $49 million). Additionally, the Mountain 

Snake region is only a small area of the Columbia basin, adjusting Olsen et al.’s 

(1991) existence value downward to reflect this would imply that an even lower 
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power design than design 11 could be optimal. Thus, my cost of extinction either 

severely overestimates existence value, or the annual BPA expenditure I used to 

represent existence value is confounded with other values such as use values. 

An alternative explanation for the difference between the magnitude of 

Olsen et al.’s (1991) existence costs and those I used for this analysis is that 

they reflect existence values at different scales of society. Olsen et al (1991) 

derived their costs by surveying residents of the Pacific Northwest. However, the 

BPA (2001) budget costs for the Mountain Snake region that I used to estimate 

the cost of extinction are driven in part by the requirements of the federal 

Endangered Species Act, and thus reflect the value held for endangered salmon 

at the broader scale of the entire population of the United States. 

Tradeoffs between objectives 

Within the context of the primary decision objective there was no tradeoff 

between social value and statistical power; the lowest cost occurred for the 

highest statistical power (Table 7). However, there was a tradeoff between the 

primary and secondary objectives. For the primary objective, social costs were 

minimized at $121.41 million for an experimental period of 12 years and power of 

close to 1.0 (Table 7). For the secondary objective, an acceptably high level of 

statistical power (0.94) was achieved in 6 years at an E(CT) of $130.40 million 

(Table 7). Although results would be achieved sooner for the secondary objective 

relative to the primary objective, which may be desirable when trying to evaluate 

recovery efforts for rapidly declining stocks, the higher probability of making a 

Type II error brings additional expected social costs of $8.99 million.  
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recovery followed trend like that modeled in this analysis, the risk-seeking 

manager would have to accept much higher social costs, and higher probability 

of Type II error for shorter duration experimental periods.  

This example illustrates that the results of my analysis could change if 

more objectives, such as minimizing the probability of extinction, were 

considered. Performance measures for additional objectives could be included 

and multi-attribute utility analysis techniques (Keeney and Raiffa 1976) used to 

facilitate tradeoff analyses and the elicitation of stakeholder values. This would 

strengthen the decision process; therefore, including more objectives would be a 

useful extension of this analysis. 

Comparison to the experimental valuation approach of Walters and Green 1997 

Walters and Green (1997) defined a valuation framework for the selection 

of optimal experimental designs that consisted of four general components: (1) 

universe of inference, (2) treatment options, (3) impact hypotheses and baseline 

policy option, and (4) value measures. My decision framework is really a special 

case of their general approach, with some important differences with respect to 

the use of a baseline policy, the assignment of probabilities to uncertain states of 

nature, and the definition of “optimal” experimental design. 

Walters and Green (1997) recommend identifying the baseline 

management policy that would be applied in the absence of experimenting. I did 

not do this explicitly, but such a baseline non-experimental policy could be 

continuing to rely on passive habitat restoration actions to recover endangered 

stocks. The baseline total cost to society in this case would not be a weighted 
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design variables) just balances the rate of loss in short-term value. Thus, they 

discuss a “global” optimum across those design variables for a specific 

parameter set. My cost function (eq. 10) is similar in structure to their valuation 

equation and for a single set of parameters (single experimental design) will also 

produce an optimum (minimum E(CT)) when the rate of increase in experimental 

costs (CE) balances the rate of decline in the expected (weighted average) costs 

of outcomes (E(CO)), both rates with respect to the number of years of 

experimental monitoring (nA). However, in this analysis, I only evaluated E(CT) at 

two points (nA = 6 and 12) for six discrete design categories (combinations of α 

and monitoring cost). Thus, the “optimal” design in this case is only optimal with 

respect to this set of 12 discrete designs. 

Comparison with results from of other research 

My results contrast with those of others besides Walters and Green 

(1997). Keeley and Walters (1994) and MacGregor et al. (2002) found that 

optimal experimental designs can occur at levels of statistical power considerably 

less than 0.8. However, my sensitivity analyses showed that the optimal base-

case design under the primary objective could switch from a higher-power to a 

lower-power design when the cost of extinction and consequently the expected 

(weighted average) costs of outcomes became closer in magnitude to  the costs 

of experimenting. A switch from the base-case optimal design 12 to the lower-

power design 11 occurred when the cost of extinction was roughly 4.2% of its 

base-case value (Figure 6). At this point the benefits of the base-case optimal 

design, in terms of reduced social costs relative to lower-cost lower-power design 
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(design 6), no longer offset the higher costs for a Type I error that it incurred 

under a true null hypothesis. 4.2% of the base-case cost of extinction for design 

12 was  $9,858,108. The expected (weighted average) total costs were about 

5.5% of their base-case value ($6.61 million vs. $122.29 million). The total cost of 

experimenting (capital costs + monitoring costs + maintenance costs + analysis 

costs) was $1,111,307 (Table 10). The ratio of experimental to expected 

(weighted average) costs of outcomes was about 0.17, a 19-fold increase from 

the ratio of 0.009 for base-case conditions.  

For their optimal designs, MacGregor et al. (2002) and Keeley and 

Walters (1994) also appear to have high ratios of experimental to expected 

(weighted average) costs of outcomes. Using as an example MacGregor et al.’s 

(2002) Scenario F with an optimal monitoring design of 9 systems for 2 years and 

a high-cost monitoring program (at CDN $80,000 per system per year) and per-

treated system capital costs of CDN $91,525, the total costs of experimenting 

would be CDN $2,263,725. The expected net present value (ENPV) for Scenario 

F was CDN $672,560. Since ENPV includes benefits less the costs of 

experimenting, I assumed that a crude analogy of the weighted costs of 

outcomes that I use (E(Co)) is the sum of the ENPV for Scenario F and its costs 

of experimenting (CDN $2,936,285). The ratio of the cost of experimenting and 

crude expected (weighted average) outcomes for Scenario F was 0.77, much 

higher than the ratio of 0.009 for my optimal design under base-case conditions.  

Similarly, I replicated Keeley and Walters’ (1994) approach and found for 

their base-case cost conditions an optimal design of 8 streams (4 treatment 
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control pairs) and 4 years of monitoring. The costs of experimenting (the sum of 

capital costs, monitoring, and maintenance costs) for this design were CDN 

$18,000,000 while the ENPV (less experimental costs) was CDN $62,196,392. In 

this case, I was able to calculate ENPV separately from the costs of 

experimenting. The ratio of the costs of experimenting to ENPV was 

approximately 0.29, again much higher than the ratio for my optimal design of 

0.009. Thus, the costs of experimenting for both MacGregor et al (2002) and 

Keeley and Walters (1994), make up a larger proportions of the expected 

(weighted average) costs of outcomes than for my base-case result (ratio of 

0.009), but are similar in proportion to that for which my base case design 

switched to a lower power design during sensitivity analyses (0.17%). Indeed, my 

analysis showed that lower power designs will be optimal too as the costs of the 

experimenting begin to make up a larger proportion of the expected (weighted 

average) costs of outcomes. 

These conditions would be more likely to occur over the experimental 

periods I considered in this analysis for net-value models that consider both 

benefits and costs. This is because the benefits that accrue under the different 

outcomes will help offset their costs and reduce the overall magnitude of the 

expected value of outcomes relative to the magnitude of the costs of the 

experimenting. For example, there could be future benefits from fishery openings 

on these populations. Such benefits would reduce the magnitude of costs when 

the aggressive action was better than the passive action by offsetting some of 

the expansion costs associated with the correct decision (power). This would 
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River research budget (about $ 31 million/year, Table 6) over the management 

period and applied this as a cost under decisions where stocks went extinct, 

which implies an enormous social value associated with preserving wild salmon 

stocks. If this value instead declined in the future (e.g., a weakened Endangered 

Species Act, or a critical need for cheap electricity), the expected (weighted 

average) costs of outcomes would decline, bringing them closer in magnitude to 

the costs of experimenting. In that situation, lower power designs would more 

likely become optimal. 

Utility of decision analysis 

Decision analysis was useful for determining an optimal BACIP 

experimental design based on an index that incorporated both biological 

uncertainty and socio-economic costs. It provided a framework for exploring 

quantitatively the robustness of the base-case results to explicit assumptions 

about the components of statistical power, the costs of experimenting, and the 

costs of outcomes. The results of these sensitivity analyses highlighted important 

factors that should be considered further. This example framework could be 

easily adapted and applied to more complex BACIP decision problems 

incorporating more detailed biological and statistical models, a broader range of 

objectives, as well as socio-economic models with a more refined structure for 

the costs of experimenting and the costs of outcomes. 
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