




When k(t) is held fixed, a straightforward application of

variational calculus demonstrates that a straight-line protocol in

v(t) is exactly optimal and agrees with the predictions of the linear

response approximation [Eq. (4)]. In Ref. [11], the average Y-

value was measured for three distinct experimental trials involving

protocols with constant k. As summarized in Fig. 2, the optimal

protocol, namely the naive straight line in the case of constant k,

shows significantly reduced Y-value compared with the protocols

used in each experimental trial. However, in terms of testing the

performance of the optimal protocols [Eq. (8)], kf =ki is the more

general case.

As in the case of finding globally optimal protocols, the problem

of finding optimal straight line protocols simplifies dramatically in

(j,x) coordinates. Using Eq. (7), we find.
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which determines an implicit expression for x(t):
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Furthermore, the relatively simple model system we treat in this

manuscript represents a new frontier for the analytical solution of

optimal protocols under the inverse diffusion tensor approxima-

tion. For significantly more complicated models of greater

biological interest, a simple general approach (in lieu of a search

for an analytical solution) would be a fully numerical method,

involving the calculation of the inverse diffusion tensor at a grid of

points in control parameter space, analogous to the approach in

[19].

Finally, there remains the important open question of what

quantity or quantities are to be optimized in faithful models of

biological processes. In this paper, we made the choice of

optimizing the Y-value which has been experimentally studied in

this particular model system [11] and may be optimized by the

same geometric framework as in [4]. These qualities were

advantageous to begin a clear and mathematically tractable first

step towards optimization of steady state transitions.

However, it is possible and perhaps likely that a properly

defined average dissipated heat will be the biologically relevant

quantity to optimize rather than the Y-value. We anticipate that a

geometric approach to optimization will be applicable to these

more general systems and notions of heat production in a relevant



The line element corresponding to the metric in Eq. (27) is
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To find the explicit coordinate transformation making the

Euclidean geometry manifest, we write the line element as

ds2~bc3f½d v
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This suggests the coordinate transformation j~
v

k
, x~

1
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so that
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In this coordinate system, geodesics are straight lines of constant

speed. To find optimal protocols in (k,v) space, one simply

transforms the coordinates of the endpoints into (j,x) space,

connects these points by a straight line, and uses the inverse

transformation to map the line onto a curve in (k,v) space. This

follows from the invariance of the geodesic equation [16].

Explicitly, the optimal protocol joining (ki,vi) and (kf ,vf ) is
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where T~
t

t
.

We validate the optimality of the geodesics [Eq. (31)]

numerically via the Fokker-Planck equation [12],
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In full generality, the mean Y-value as a functional of the

protocol l(t)~(k(t),v(t)) is
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Here angled brackets denote averages over the nonequilibrium

probability density r(x,t).

By integrating Eq. (32) against x and x2, we find a system of

equations for relevant nonequilibrium averages:
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