Using Nonequilibrium Fluctuation Theorems to Understand and Correct Errors in Equilibrium and Nonequilibrium Simulations of Discrete Langevin Dynamics

$$dv = \frac{f(t)}{r} dt - \gamma v dt + \sqrt{\frac{2\gamma}{2r}} dW(t), \qquad (1)$$

' - 1 $f = -\partial \mathcal{H} / \partial r. F$ $f = -\partial \mathcal{H} / \partial r. F$

$$\nu\left(n+\frac{1}{2}\right) = \nu(n) + \frac{t}{2}\frac{f(n)}{m},\tag{2}$$

$$r(n+1) = r(n) + t v \left(n + \frac{1}{2}\right),$$
 (2)

$$v(n+1) = v\left(n+\frac{1}{2}\right) + \frac{t}{2}\frac{f(n+1)}{m}.$$
 (2)

1 -<u>-</u> - $\begin{array}{c} \mathbf{H}_{1} \\ \mathbf{H}_{2} \\ \mathbf{H}_{3} \\ \mathbf{H$ $H_{1} = H_{1} = H_{1$

 $F_{\rm e} / N_{\rm H_2O} k_{\rm B} T \approx a t^4, \tag{7}$

a 11 નુ ป. Μ J 1 36 ો 1 34 P. 1 ł ો Ŋ H) $(x) \propto$ $p_{\rm e}$ $-\beta \mathcal{H}(x)],$ า] -Í. e 1 S N VI 1 E 0 11 J ŗ 111-ને 1111 1 LA 9 V 1 11 01'-LLA 11-,1 <u>_</u>]_] ন 1

 $\begin{array}{c} M_{1} \left[1 \right]^{1} \left[1$

$$-\frac{P\left(W_{\sharp'\varsigma},W_{\mathrm{s}\,\mathrm{had}}\right)}{P\left(-W_{\sharp'\varsigma}-W_{\mathrm{s}\,\mathrm{had}}\right)} = e^{\beta\left(W_{\sharp'\varsigma}+W_{\mathrm{s}\,\mathrm{had}}-F_{\mathrm{e}}\right)}.$$
 (9)

Ë <u>ا[</u> 1 $G \rightarrow G$ ને 1 37,38 . E0 🧃 🗖 (<mark>9)</mark>, ! J 1 $+ W_{s had}$ $F_{\rm e}$ W ને 7] L -1 1> (9) E0] പ 1 22 E0. (9) ٦ n), Ĩ ſŊ . F S VI. . J 011-4 ĔO. S L (12).1 1. VII. 7 1 121,1 ٢_ $(ITFT)^{2} E_{0}^{0}$. (15). 7 1 J !_ 1 ø

VI. RECOVERING EQUILIBRIUM STATISTICS FROM NONEQUILIBRIUM SIMULATIONS

1 12	N ,]	-] Q !	۴,	- 1	1. f
-1 -	ייין אויייי י איייי	LJ A L	۲ آل ر	ฦ่ๅ	1
	<u>F</u> L LT	- L ,	ר] <u>.</u>	•]	11 11

$$\frac{P(W_{j'_{\zeta}} < 0)}{P(W_{j'_{\zeta}} > 0)} \bigg/ \langle e^{-\beta W_{j'_{\zeta}}} \rangle_{W_{j'_{\zeta}} > 0},$$
(15)

VIII. EPILOGUE

$$T = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}, \quad EO. \quad (6), \qquad O = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 \\$$

$$\delta^{2}(F_{e}) = \begin{bmatrix} a^{j}(W_{0 \to M}) + a^{j}(W_{M \to 2M}) \\ - 2c' - (W_{0 \to M}, W_{M \to 2M}) \end{bmatrix} / (4N_{eff}), \quad (A2)$$

$$a^{j}(x) + c' - (x, y) - c^{j}(x, y) + c^$$

at $(x) \neq c = (x, y)$ $(x) \neq c = (x, y)$ $(x) \neq d = (x, y)$ $(x) \neq (x, y)$ $(x) \neq (x, y)$ $(x) \neq (x, y)$ $(x) \neq (x) = (x, y)$ (x) = (x, y) (x) = (x, y)(