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A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful

work, while operating away from thermal equilibrium without excessive dissipation. To this end, we

derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within

the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and

bestows optimal protocols with many useful properties. We discuss the connection to the existing

thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal

control parameter protocols in a simple nonequilibrium model.

DOI: 10.1103/PhysRevLett.108.190602 PACS numbers: 05.70.Ln, 02.40.Ky, 02.60.Cb, 05.40.�a

Introduction.—Molecular machines are microscopic ob-
jects that manipulate energy, matter, and information on
the nanometer scale. Naturally occurring machines are
central to the performance of virtually any prominent
cellular process, and the design of synthetic machines
holds out the promise for significant technological advan-
ces. A major impediment to quantitative understanding of
their thermodynamics is that molecular-scale machines
typically operate out of thermodynamic equilibrium. For
instance, the rotary FOF1-ATPase motor is powered by
proton flow across a gradient producing a free energy
difference of �200 meV per proton. This free energy
difference dwarfs the characteristic energy scale of thermal
fluctuations under ambient conditions, 1kBT � 25 meV
(where kB is Boltzmann’s constant and the temperature is
T � 300 K); hence, the proton flux drives the machine out
of equilibrium. In such contexts, equilibrium statistical
mechanics has limited applicability and a nonequilibrium
understanding of these machines is vital. Indeed, living
processes with their preparation and preservation of order
must, by their very nature, be out of equilibrium, leading
Schrödinger to equate death with ‘‘the decay into thermo-
dynamical equilibrium’’ [1].

A central figure of merit for both molecular and macro-
scopic machines is thermodynamic efficiency: their ability
to exploit available energy from a source to perform useful
work, while minimizing dissipation of heat into the sur-
rounding environment. The importance of efficiency en-
genders an interest in understanding the basic physical
principles at play, the limits on efficiency in energy con-
version, and the characteristics of optimal machines. In
order to generate insights into biomolecular machine effi-
ciency, insights that are transferable to the design of novel
synthetic molecular machines, a general framework is
necessary, one that abstracts away from many of the mo-
lecular details and instead focuses (at least initially) on
criteria for optimal nonequilibrium processes.

For macroscopic systems, the properties of optimal pro-
cesses have been investigated using thermodynamic

length, a natural measure of the distance between equilib-
rium thermodynamic states [2]. Its original derivations,
developed in the context of finite-time thermodynamics,
considered the metrics on equilibrium manifolds, specifi-
cally the second derivatives of internal energy [2], entropy
[3], or free energy [4], all essentially equivalent in the
thermodynamic limit [5]. Central results were derived
under the assumption of endoreversibility [6], whereby
the system and environment are in thermal equilibrium,
though not necessarily equilibrated with each other. In a
system driven by changes in a single control parameter,
this amounts [9

rium fluctuations of the conjugate force), and showed how
to experimentally measure this quantity using work fluc-
tuation relations [10]. In this Letter, we show that a micro-
scopic and generalized formulation of thermodynamic
length analysis can be derived directly from linear-
response theory, without recourse to endoreversibility.
The resulting thermodynamic metric structure imbues op-
timal processes with several important properties: optimal
paths (those that minimize dissipation) are geodesics [11],
dissipation is inversely proportional to protocol duration,
the optimal control parameter path is independent of dura-
tion, and optimal protocols perturb the control parameter
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Here we derive a generalized thermodynamic length analy-
sis from linear response without resort to the assumption of
endoreversibility.

We assume a physical system in contact with a thermal
bath. The probability distribution over microstates x at
equilibrium is given by the canonical ensemble

�ðxj�Þ ¼ exp�½Fð�Þ � Eðx;�Þ�; (1)

where � ¼ 1=kBT is the inverse temperature T
of the environment in natural units, Fð�Þ �
�kBT ln

P
x expf��Eðx;�Þg is the free energy, and

Eðx;�Þ is the system energy as a function of the microstate
x and a collection of experimentally controllable parame-
ters � of the system. In the case of a gas confined to a
cylinder, a control parameter could be the position of the
piston imposing a particular accessible volume. For a
single macromolecule stretched between two optical traps,
the control parameter could be the distance between the
traps, imposing a harmonic energetic bias on the separation
of the optical beads, between which the macromolecule is
stretched. Control parameters can also represent collective
variables, order parameters, or reaction coordinates.

In equilibrium, the macroscopic state of the system (the
probability distribution over microstates) is completely
specified by values of the control parameters, but out of
equilibrium the system’s probability distribution over mi-
crostates fundamentally depends on the history of the
control parameter �, which we denote by the control
parameter protocol �. We assume the protocol is suffi-
ciently smooth to be twice time differentiable.

As formulated, this driving by a time-dependent
Hamiltonian can model a nonequilibrium steady state in
the rest frame of a constantly translating potential [14



P exðt0Þ ¼ �

�
d�T

dt

�
t0

�
Z t0

�1
dt0

d�ð�ðt0ÞÞðt0 � t0Þ
dt0

� ½�ðt0Þ � �ðt0Þ�: (8)

Integration by parts gives

P exðt0Þ ¼ �

�
d�T

dt

�
t0

�
Z t0

�1
dt0�ð�ðt0ÞÞðt0 � t0Þ �

�
d�

dt

�
t0
;

(9)

where the boundary term at t0 ¼ t0 vanishes trivially,
and the one at t0 ¼ �1





Under the optimal protocol, the trap center and inverse
square root of the spring constant each change at a constant
rate, independent of time. This corresponds to changing the
equilibrium mean and standard deviation of position at a
constant rate.

Seifert and coworkers elegantly derived the exact opti-
mal protocols for perturbing the position and spring
constant separately, for both over-damped [35] and
under-damped [36] Langevin dynamics. Their analysis
found optimal protocols similar to ours but with discrete
control parameter jumps at the beginning and end of the
protocol (though these jumps are smoothed to boundary
layers under regularization that penalizes acceleration
[37]). Our method misses such protocol jumps because
our derivation assumes that the velocities of protocols
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