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and molecular machines. For instance, it is conceptually
straightforward to view the chemical hydrolysis of ATP as
driving the processive motion of the molecular motor kinesin
[20], or the Fo component of ATP synthase as mechanically
driving the rotation of a central crankshaft, inducing the F1

component to catalyze the production of ATP [16]. Thus there
is a natural appeal to quantifying the work (and the excess
work) done by one component of an autonomous biomolec-
ular machine on another. Indeed, such internal energy flows
have been used to aid in the identification of reaction coordi-
nates in biomolecular dynamics [21].

Given the biophysical importance of entropy production,
and the mathematical constraints imposed on it by fluctuation
theorems and second-law-like inequalities, it is tempting to
use the correspondence between excess work and entropy
production in systems driven by an external control param-
eter to aid in the conceptual and quantitative understanding
of biomolecular machines [22–24]. However, while it is still
possible to define excess work internal to such systems as
an energy flow, it has no direct relationship to the entropy
production.

In this article, we investigate excess work and entropy
production in strongly coupled autonomous systems and
present an alternative measure of dissipation—the transduced
additional free-energy rate—which plays the same thermo-
dynamic role in autonomous systems as excess power does
in externally driven systems. Specifically, the steady-state
transduced additional free energy rate (differing from the ex-
cess power by an information rate that captures the effects
of intersystem coupling) equals an entropy production rate.
We then illustrate our results in a simple model of a cyclic
mechanochemical motor, where a mechanical system is driven
via its strong coupling to a stochastic nonequilibrium chemi-
cal reaction.

II. STRONGLY COUPLED MULTICOMPONENT SYSTEMS

Throughout this article, we consider a bipartite system
described by two coordinates X
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B. Thermodynamically complete system

In autonomous systems (such as molecular machines
consisting of multiple strongly interacting components) not
subject to temporal variation of an external control param-
eter, thermodynamic consistency requires that the entries of
the transition rate matrix Rxx′

yy′ satisfy local detailed balance
[3,4,34],

ln
Rxx′

yy′

Rx′x
y′y

= −β
(
�εxx′

yy′ + �μyy′
)
, (18)

where �εxx′
yy′ + �μyy′ is the change in thermodynamic po-

tential during the transition (x′, y′) → (x, y), involving the
change �εxx′

yy′ ≡ εxy − εx′y′ in system energy during transitions
in X and Y and the change �μyy′ in chemical potential dur-
ing transitions of subsystem Y (satisfying �μyy′ = −�μy′y
and hence �μyy = 0). Despite the particular form of ther-
modynamic potential implied by the RHS, the theoretical
framework we present is more broadly applicable so long as
the dynamics of subsystem X are detailed balanced.

We call systems thermodynamically complete when all
rates satisfy local detailed balance [Eq. (18)]. Conversely,
we call systems (such as the independent Y dynamics in
Sec. III A) thermodynamically incomplete when the transition
rates violate Eq. (18), as some external influences are required
to ensure thermodynamic consistency. Thus, thermodynam-
ically complete systems are those which in the absence of
driving relax to equilibrium, though with driving present (our
case here) they need not.

In detailed-balanced dynamics—or any dynamics where
subsystem Y receives feedback from X—the excess work
[Eq. (15)] associated with a particular Y transition is not lower
bounded by zero and can be negative.

We present the transduced additional free energy rate or
TAFER (the name will become clear),

βḞ add
Y →X ≡ βẆ ex

Y →X + İo r
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where �chem and �mech are kinetic prefactors for the chemi-
cal and mechanical rates, quantifying the bare rates of each
process in the absence of any differences �εxx′

yy′ ≡ εxy − εx′y′

in state energies εxy



LARGE, EHRICH, AND SIVAK PHYSICAL REVIEW E 103, 022140 (2021)

−15

0

15

(a)
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βḞ add
Y →X

Σ̇X





https://doi.org/10.1146/annurev-conmatphys-062910-140506
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1146/annurev-conmatphys-031218-013554
https://doi.org/10.1016/j.physa.2014.04.035
https://doi.org/10.1103/PhysRevX.7.021051
https://doi.org/10.1209/0295-5075/89/60003
https://doi.org/10.1103/PhysRevLett.97.140603
https://doi.org/10.1103/PhysRevE.71.060101
https://doi.org/10.1073/pnas.1817778116
https://doi.org/10.1038/nature04061
https://doi.org/10.1103/PhysRevLett.104.090601
https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/PhysRevX.4.031015
https://doi.org/10.1021/acs.chemrev.9b00254
https://doi.org/10.1073/pnas.1106787108
https://doi.org/10.1038/386299a0
https://doi.org/10.1038/ncb1394
https://doi.org/10.1073/pnas.1812149116
https://doi.org/10.1063/1.4943581
https://doi.org/10.1073/pnas.1915676117
https://doi.org/10.1209/0295-5075/124/20001
https://doi.org/10.1103/PhysRevLett.115.260603
https://doi.org/10.1088/1742-5468/2014/02/P02016
https://doi.org/10.1103/PhysRevE.85.041125
https://doi.org/10.1088/1742-5468/ab342b
https://doi.org/10.1103/PhysRevLett.108.190602
https://doi.org/10.1103/PhysRevLett.106.250601
https://doi.org/10.1103/PhysRevLett.98.108301


FREE-ENERGY TRANSDUCTION WITHIN AUTONOMOUS … PHYSICAL REVIEW E 103, 022140 (2021)

collects information about an external and independent stochas-
tic variable Y . Rearranging the second law with the information
rate on the RHS of Eq. (6) yields a refined lower bound on the
steady-state dissipation for the system in terms of the nostalgia
[42,43] or learning rate [44,45].
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