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Abstract. Many interesting divergence measures between conjugate ensembles
of nonequilibrium trajectories can be experimentally determined from the work
distribution of the process. Herein, we review the statistical and physical
significance of several of these measures, in particular the relative entropy
(dissipation), Jeffreys divergence (hysteresis), Jensen–Shannon divergence (time-
asymmetry), Chernoff divergence (work cumulant generating function), and
Rényi divergence.
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the same series of changes, in reverse, back to λ(a). As a consequence of the time-reversal
symmetry of the underlying dynamics, the ratio of the probability of a trajectory during
the forward protocol P [z|Λ] and the probability of its conjugate trajectory during the
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For conjugate trajectory ensembles, the Jeffreys divergence is twice the hysteresis, the
average dissipation of the forward and reverse protocols [26],

Jeffreys(P [z|Λ]; P [z̃|Λ̃]) = β〈W 〉Λ − βΔFΛ + β〈W 〉Λ̃ − βΔFΛ̃,

= β〈W 〉Λ + β〈W 〉Λ̃

= 2 × hysteresis. (10)

4. Jensen–Shannon divergence and time-asymmetry

The Jensen–Shannon divergence is defined as [30]

JS(p; q) ≡ 1
2
D(p ‖ 1

2
(p + q)) + 1
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The Jensen–Shannon and Jeffreys divergences are related by the inequalities [5, 26]

JS(p; q) ≤ 1
8
Jeffreys(p; q) JS(p; q) ≤ ln

2

1 + exp(−(1/2)Jeffreys(p; q))
. (14)

These inequalities imply that a given time-asymmetry requires a certain minimum
hysteresis.

5. Chernoff divergence and work cumulant generating functions

The Chernoff divergence of order α is defined as [33, 34]

Chernoffα(p; q) ≡ − ln
∑

i

pi

(
pi

qi

)α−1

,

= − ln[Cf (p; q) + 1], f(x) = x1−α − 1. (15)

The Chernoff divergence is zero for α = 1 and 0, and reaches a maximum, the Chernoff
information [22, 33], for some intermediate value of α. The Chernoff divergence is well
defined for α > 1 if qi > 0 whenever pi > 0, and for α < 0 if pi > 0 whenever qi > 0, and
thus defined for all α if the distributions have the same support.

The Chernoff divergence of order α is related to the Chernoff divergence of order 1−α
with the distributions interchanged [34],

Chernoffα(p; q) = Chernoff1−α(q; p). (16)

This relation always holds for α ∈ [0, 1], and for all α when the distributions have the
same support.

For conjugate trajectory ensembles, the Chernoff divergence of order 1 − α is
proportional to the cumulant generating function for the excess work,

Chernoff1−α(P [z|Λ]; P [z̃|Λ̃]) = − ln〈e−α(βW−βΔF )〉Λ. (17)

Recall that a cumulant generating function has the form

ln〈etz〉 =
∞∑

n=1

tn
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or equivalently

ln〈e−αβW 〉Λ = ln〈e−(1−α)βW 〉Λ̃ − βΔFΛ. (21)

Note that an additional minus sign enters into the right hand expression because
both the work and free energy change are odd under time-reversal, W [z, Λ] − ΔFΛ =
−W [z̃, Λ̃]+ΔFΛ̃. If we set α = 1 or 0 we recover the Jarzynski identity, ln〈exp{−βW }〉Λ =
−βΔFΛ [16].

This symmetry between cumulant generating functions implies that the work
cumulants under a given protocol are related to the work cumulants of the conjugate
protocol [36],

κk[βW |Λ] =

∞∑

n=k

(−1)n

(n − k)!
κn[βW |Λ̃]. (22)

From this relation Hummer and Szabo [36, 37] derive optimal estimators of free energy,
given only the first m work cumulants. In a parallel development, this symmetry is also
exploited in the large deviation approach to steady state fluctuation theorems [35].

The case α = 1
2

is related to the Bhattacharyya distance, another measure of
probability distribution overlap [38],

Bhattacharyya(p; q) = − ln
∑

i

√
piqi

= Chernoff 1
2
(p; q). (23)

The Bhattacharyya distance is invariant to interchange of p and q
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7. Illustrative analytic example

To make these relations more concrete, we consider a system consisting of a micron-
sized bead suspended in water at inverse temperature β by an initially stationary optical
laser trap, with spring constant k. The trap is then translated at a constant velocity v,
dragging the bead through the fluid with friction coefficient γ for a time t. This system
can be modeled by a single particle undergoing overdamped Langevin dynamics in a
one dimensional moving harmonic potential, and the pertinent properties of the model
have been analyzed [27, 41]. The free energy change is zero and the work distribution is
Gaussian with mean

W0 ≡ γv2 [t − (1 − e−kt/γ) γ/k], (31)

and variance 2W0.
The relative entropy, Jeffreys divergence and Chernoff divergence for this model are

all simple functions of βW0:

D(P [z|Λ]‖P [z̃|Λ̃]) = βW0, Jeffreys(P [z|Λ]; P [z̃|Λ̃]) = 2βW0,

Chernoff1−α(P [z|Λ]; P [z̃|Λ̃]) = α(α − 1)βW0.
(32)

The Jensen–Shannon divergence does not appear to have a simple closed-form solution
for this system.

8. Epilogue

As we have seen, a number of f -divergences have both interesting statistical and
physical interpretations for conjugate ensembles of nonequilibrium trajectories, and can
be measured in computer simulation and real world experiments. This allows us to exploit
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